We present a feedback-corrected optimal scheduling approach to reduce the demand of electrical energy of batchprocesses, exemplified at the sand preparation in foundry. The main energy driver in the exemplary foundry...
详细信息
ISBN:
(纸本)9781665414968
We present a feedback-corrected optimal scheduling approach to reduce the demand of electrical energy of batchprocesses, exemplified at the sand preparation in foundry. The main energy driver in the exemplary foundry is the idle time of the batch-wise working sand mixers. In this novel approach, we use linear integer programming to minimize the demand of energy of the sand mixers by scheduling the batches in real-time. For the optimization we use a physical model of the sand preparation, which takes dwell-times of the processes as dead-time systems into account. In this paper, we present the steps to make the optimal scheduling approach applicable for the production process. The application at the real production plant proves the performance of the suggested approach. Compared to the conventional control, the feedback-corrected optimal scheduling approach leads to an reduction in energy consumption of approximately 6.5 % without modifying the process or the aggregates.
This paper presents a novel approach for modelling the energy consumption of the coupled parallel moulding sand mixers of a foundry as an optimal control problem. The minimization of energy consumption is optimized by...
详细信息
ISBN:
(纸本)9781728157306
This paper presents a novel approach for modelling the energy consumption of the coupled parallel moulding sand mixers of a foundry as an optimal control problem. The minimization of energy consumption is optimized by scheduling the mixing processes in a linear integer programming scheme. The sand flow through the foundry's sand preparation is characterized by a physical model. This model considers the sand demand of the moulding machine as disturbance, the stored sand masses in the mixer hoppers and machine hoppers, respectively. The novel approach of handling dwell-times for dosing, mixing and transport processes using dead-time systems and constraint pushing allows the application of a linear model. The formulation of the optimal control problem aims at real-time application as model predictive control at the production plant. Initial application results indicate an improvement in energy consumption of approximately 8 %.
暂无评论