咨询与建议

限定检索结果

文献类型

  • 2,206 篇 期刊文献
  • 737 篇 会议
  • 28 篇 学位论文
  • 1 册 图书

馆藏范围

  • 2,972 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,613 篇 工学
    • 1,119 篇 计算机科学与技术...
    • 608 篇 电气工程
    • 326 篇 控制科学与工程
    • 303 篇 材料科学与工程(可...
    • 233 篇 机械工程
    • 220 篇 信息与通信工程
    • 218 篇 石油与天然气工程
    • 177 篇 化学工程与技术
    • 162 篇 软件工程
    • 161 篇 土木工程
    • 150 篇 动力工程及工程热...
    • 131 篇 力学(可授工学、理...
    • 111 篇 环境科学与工程(可...
    • 100 篇 仪器科学与技术
    • 69 篇 生物医学工程(可授...
    • 67 篇 建筑学
    • 65 篇 航空宇航科学与技...
    • 58 篇 交通运输工程
    • 54 篇 电子科学与技术(可...
    • 45 篇 水利工程
  • 740 篇 理学
    • 240 篇 物理学
    • 205 篇 化学
    • 176 篇 数学
    • 104 篇 生物学
    • 72 篇 地球物理学
    • 43 篇 统计学(可授理学、...
  • 287 篇 管理学
    • 262 篇 管理科学与工程(可...
  • 159 篇 医学
    • 81 篇 临床医学
    • 79 篇 基础医学(可授医学...
  • 55 篇 农学
  • 30 篇 经济学
  • 12 篇 法学
  • 4 篇 教育学
  • 4 篇 艺术学
  • 3 篇 文学

主题

  • 2,972 篇 bayesian optimiz...
  • 447 篇 machine learning
  • 172 篇 deep learning
  • 141 篇 gaussian process
  • 125 篇 optimization
  • 106 篇 gaussian process...
  • 82 篇 gaussian process...
  • 82 篇 bayes methods
  • 64 篇 hyperparameter o...
  • 60 篇 transfer learnin...
  • 58 篇 multi-objective ...
  • 48 篇 random forest
  • 47 篇 reinforcement le...
  • 47 篇 convolutional ne...
  • 46 篇 active learning
  • 44 篇 genetic algorith...
  • 43 篇 artificial intel...
  • 38 篇 black-box optimi...
  • 35 篇 xgboost
  • 34 篇 convolutional ne...

机构

  • 10 篇 univ chinese aca...
  • 10 篇 adv micro device...
  • 9 篇 north carolina s...
  • 9 篇 jcmwave gmbh bol...
  • 9 篇 beijing jiaotong...
  • 9 篇 huazhong univ sc...
  • 8 篇 zhejiang univ co...
  • 7 篇 oak ridge natl l...
  • 7 篇 oak ridge natl l...
  • 6 篇 sun yat sen univ...
  • 6 篇 riken ctr adv in...
  • 6 篇 mit dept mech en...
  • 6 篇 tsinghua univ de...
  • 6 篇 zhejiang univ st...
  • 6 篇 univ tokyo
  • 6 篇 southwest jiaoto...
  • 6 篇 fudan univ sch m...
  • 6 篇 pusan natl univ ...
  • 6 篇 school of resour...
  • 6 篇 imperial coll lo...

作者

  • 17 篇 gupta sunil
  • 16 篇 venkatesh svetha
  • 16 篇 rana santu
  • 15 篇 jin bingzi
  • 15 篇 zeng xuan
  • 15 篇 xu xiaojie
  • 12 篇 yang fan
  • 11 篇 chen wei
  • 11 篇 candelieri anton...
  • 10 篇 wang yan
  • 10 篇 archetti frances...
  • 9 篇 zhou dian
  • 9 篇 schneider philip...
  • 9 篇 couckuyt ivo
  • 9 篇 bartoli nathalie
  • 9 篇 jin yaochu
  • 9 篇 burger sven
  • 9 篇 rupenyan alisa
  • 9 篇 dhaene tom
  • 9 篇 yan changhao

语言

  • 2,765 篇 英文
  • 194 篇 其他
  • 10 篇 中文
  • 6 篇 法文
  • 4 篇 德文
  • 2 篇 西班牙文
  • 2 篇 俄文
  • 1 篇 立陶宛文
  • 1 篇 荷兰文
检索条件"主题词=bayesian optimization"
2972 条 记 录,以下是1-10 订阅
排序:
bayesian optimization of gray-box process models using a modified upper confidence bound acquisition function
收藏 引用
COMPUTERS & CHEMICAL ENGINEERING 2025年 194卷
作者: Winz, Joschka Fromme, Florian Engell, Sebastian TU Dortmund Univ Emil Figge Str 70 D-44227 Dortmund Germany
Optimizing complex process models can be challenging due to the computation time required to solve the model equations. A popular technique is to replace difficult-to-evaluate submodels with surrogate models, creating... 详细信息
来源: 评论
bayesian optimization for quick determination of operating variables of simulated moving bed chromatography
收藏 引用
COMPUTERS & CHEMICAL ENGINEERING 2025年 192卷
作者: Jeong, Woohyun Jang, Namjin Lee, Jay H. Korea Adv Inst Sci & Technol Dept Chem & Biomol Engn Daejeon 34141 South Korea Hanwha Solut Corp Daejeon R&D Ctr 76 Gajeong Ro Daejeon 34128 South Korea Univ Southern Calif Mork Family Dept Chem Engn & Mat Sci Los Angeles CA 90089 USA
The Simulated Moving Bed (SMB) is a continuous chromatographic separation process that operates on the principle of counter-current movement between the solid and liquid phases. Due to periodic switching of feed and p... 详细信息
来源: 评论
bayesian optimization for hyper-parameter tuning of an improved twin delayed deep deterministic policy gradients based energy management strategy for plug-in hybrid electric vehicles
收藏 引用
APPLIED ENERGY 2025年 381卷
作者: Wang, Jinhai Du, Changqing Yan, Fuwu Hua, Min Gongye, Xiangyu Yuan, Quan Xu, Hongming Zhou, Quan Wuhan Univ Technol Sch Automot Engn Wuhan 430070 Hubei Peoples R China Univ Birmingham Sch Engn Birmingham B15 2TT England
Hybridization and electrification of vehicles are underway to achieve Net-zero emissions for road transport. The upcoming deep reinforcement learning (DRL) algorithm shows great promise for the efficient energy manage... 详细信息
来源: 评论
bayesian optimization of tailgate rib structures enhancing structural stiffness under manufacturing constraints of injection molding
收藏 引用
JOURNAL OF MANUFACTURING PROCESSES 2025年 134卷 739-748页
作者: Lee, Hugon Yeo, Jinwook Kong, Keonpyo Myeong, Dujae Jang, Donghoon Lee, Jongyeob Choi, Hyeokhwan Kim, Namkeun Ryu, Seunghwa Korea Adv Inst Sci & Technol KAIST Dept Mech Engn Daejeon 34141 South Korea Genesis Closure Engn Design Team Hyundai Motor Grp Hwaseong 19278 South Korea Q JEN Mold Tech Tech Sales Dept Incheon 21700 South Korea Q JEN Mold Tech Mold Design Dept Incheon 21700 South Korea Ulsan Technopk Automot Parts Inst Ctr Ulsan 44222 South Korea Sogang Univ Dept Mech Engn Seoul 04107 South Korea
The shift towards environmentally friendly transportation has driven significant attention to lightweight vehicle design, especially to counterbalance the substantial weight of batteries in electric vehicles. Reinforc... 详细信息
来源: 评论
bayesian optimization With Formal Safety Guarantees via Online Conformal Prediction
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2025年 第1期19卷 45-59页
作者: Zhang, Yunchuan Park, Sangwoo Simeone, Osvaldo Kings Coll London Ctr Intelligent Informat Proc Syst CIIPS Dept Engn Kings Commun Learning & Informat Proc KCLIP Lab London WC2R 2LS England
Black-box zero-th order optimizationis a central primitive for applications in fields as diverse as finance, physics, and engineering. In a common formulation of this problem, a designer sequentially attempts candidat... 详细信息
来源: 评论
bayesian optimization with embedded stochastic functionality for enhanced robotic obstacle avoidance
收藏 引用
CONTROL ENGINEERING PRACTICE 2025年 154卷
作者: Teodorescu, Catalin Stefan West, Andrew Lennox, Barry Univ Manchester Dept Elect & Elect Engn Oxford Rd Manchester M13 9PL England
Designing an obstacle avoidance algorithm that incorporates the stochastic nature of human-robot-environment interactions is challenging. In high risk activities, such as those found in nuclear environments, a compreh... 详细信息
来源: 评论
bayesian optimization over the probability simplex
收藏 引用
ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE 2025年 第1期93卷 77-91页
作者: Candelieri, Antonio Ponti, Andrea Archetti, Francesco Univ Milano Bicocca Dept Econ Management & Stat Milan Italy Univ Milano Bicocca Dept Comp Sci Syst & Commun Milan Italy
Gaussian Process based bayesian optimization is largely adopted for solving problems where the inputs are in Euclidean spaces. In this paper we associate the inputs to discrete probability distributions which are elem... 详细信息
来源: 评论
bayesian optimization in Bioprocess Engineering-Where Do We Stand Today?
收藏 引用
BIOTECHNOLOGY AND BIOENGINEERING 2025年 第0期 2025 Mar 5页
作者: Gisperg, Florian Klausser, Robert Elshazly, Mohamed Kopp, Julian Brichtova, Eva Prada Spadiut, Oliver Christian Doppler Lab Inclus Body Proc 4 0 Vienna Austria Tech Univ Wien Inst Chem Environm & Biosci Engn Res Area Biochem Engn Vienna Austria
bayesian optimization is a stochastic, global black-box optimization algorithm. By combining Machine Learning with decision-making, the algorithm can optimally utilize information gained during experimentation to plan... 详细信息
来源: 评论
bayesian optimization OF HYPER-PARAMETERS AND REWARD FUNCTION IN DEEP REINFORCEMENT LEARNING: APPLICATION TO BEHAVIOR LEARNING OF MOBILE ROBOT
收藏 引用
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL 2025年 第2期21卷 469-480页
作者: Nishimura, Takuto Sota, Ryosuke Horiuchi, Tadashi Matsue Coll Natl Inst Technol Adv Engn Fac 14-4 Nishi Ikuma Matsue Shimane 6908518 Japan Nara Inst Sci & Technol Grad Sch Sci & Technol 8916-5 Takayama Cho Ikoma Nara 6300192 Japan
. Deep reinforcement learning is a machine learning method that combines deep learning and reinforcement learning. Deep Q-Network (DQN) is one of the typical methods of deep reinforcement learning. DQN uses Convolutio... 详细信息
来源: 评论
bayesian optimization Of NeuroStimulation (BOONStim)
收藏 引用
BRAIN STIMULATION 2025年 第2期18卷 112-115页
作者: Oliver, Lindsay D. Jeyachandra, Jerrold Dickie, Erin W. Hawco, Colin Mansour, Salim Hare, Stephanie M. Buchanan, Robert W. Malhotra, Anil K. Blumberger, Daniel M. Deng, Zhi-De Voineskos, Aristotle N. Campbell Family Mental Hlth Res Inst Ctr Addict & Mental Hlth Toronto ON Canada Univ Toronto Dept Psychiat Toronto ON Canada Univ Maryland Sch Med Maryland Psychiat Res Ctr Dept Psychiat Baltimore MD 21228 USA Zucker Hillside Hosp Div Psychiat Res Div Northwell Hlth Glen Oaks NY USA Donald & Barbara Zucker Sch Med Hofstra Northwell Dept Psychiat Hempstead NY USA Feinstein Inst Med Res Ctr Psychiat Neurosci Manhasset NY USA Ctr Addict & Mental Hlth Temerty Ctr Therapeut Brain Intervent Toronto ON Canada Duke Univ Sch Med Dept Psychiat & Behav Sci Durham NC USA Natl Inst Mental Hlth Intramural Res Program Expt Therapeut Branch Noninvas Neuromodulat Unit Bethesda MD USA
来源: 评论