咨询与建议

限定检索结果

文献类型

  • 13 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 17 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 工学
    • 15 篇 控制科学与工程
    • 13 篇 电气工程
    • 2 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 17 篇 big data in robo...
  • 5 篇 ai-based methods
  • 2 篇 object detection
  • 2 篇 reinforcement le...
  • 2 篇 task analysis
  • 2 篇 factory automati...
  • 2 篇 deep learning in...
  • 2 篇 intelligent tran...
  • 2 篇 cloud computing
  • 1 篇 categorization
  • 1 篇 reliability
  • 1 篇 segmentation
  • 1 篇 computer vision ...
  • 1 篇 production syste...
  • 1 篇 logistics
  • 1 篇 deep learning fo...
  • 1 篇 learning and ada...
  • 1 篇 computer archite...
  • 1 篇 dropout strategy
  • 1 篇 cyber-physical s...

机构

  • 2 篇 imperial coll lo...
  • 1 篇 univ tokyo grad ...
  • 1 篇 univ parma dept ...
  • 1 篇 univ calif berke...
  • 1 篇 new jersey inst ...
  • 1 篇 hong kong univ s...
  • 1 篇 sun yat sen univ...
  • 1 篇 shanghai univ sc...
  • 1 篇 hong kong univ s...
  • 1 篇 shanghai key lab...
  • 1 篇 univ chinese aca...
  • 1 篇 elettr 80 spa i-...
  • 1 篇 riken ctr adv in...
  • 1 篇 state key labora...
  • 1 篇 univ macau peopl...
  • 1 篇 chinese acad sci...
  • 1 篇 tech univ munich...
  • 1 篇 natl cheng kung ...
  • 1 篇 peking univ sch ...
  • 1 篇 tohoku univ grad...

作者

  • 2 篇 kahn gregory
  • 2 篇 levine sergey
  • 2 篇 johns edward
  • 2 篇 abbeel pieter
  • 2 篇 vogel-heuser bir...
  • 1 篇 barbieri f.
  • 1 篇 fett thomas
  • 1 篇 cendelin rostisl...
  • 1 篇 zhang jiyao
  • 1 篇 beksi william j.
  • 1 篇 di palo norman
  • 1 篇 runqi chai
  • 1 篇 mizuno naoki
  • 1 篇 chen tianhao
  • 1 篇 liu ming
  • 1 篇 ohno kazunori
  • 1 篇 luo xin
  • 1 篇 cheng fan-tien
  • 1 篇 ding hao
  • 1 篇 wu mingdong

语言

  • 17 篇 英文
检索条件"主题词=big data in robotics and automation"
17 条 记 录,以下是1-10 订阅
排序:
Extracting Traffic Primitives Directly From Naturalistically Logged data for Self-Driving Applications
收藏 引用
IEEE robotics AND automation LETTERS 2018年 第2期3卷 1223-1229页
作者: Wang, Wenshuo Zhao, Ding Univ Calif Berkeley Dept Mech Engn Berkeley CA 94720 USA Beijing Inst Technol Dept Mech Engn Beijing 100081 Peoples R China Univ Michigan Dept Mech Engn Ann Arbor MI 48109 USA
Developing an automated vehicle, that can handle complicated driving scenarios and appropriately interact with other road users, requires the ability to semantically learn and understand driving environment, oftentime... 详细信息
来源: 评论
Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow Profile
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第4期5卷 5010-5017页
作者: Li, Ziyue Yan, Hao Zhang, Chen Tsung, Fugee Hong Kong Univ Sci & Technol Dept Ind Engn & Decis Analyt Hong Kong Peoples R China Arizona State Univ Sch Comp Informat & Decis Syst Engn Tempe AZ 85281 USA Tsinghua Univ Ind Engn Beijing 100084 Peoples R China
Spatiotemporal data are very common in many applications, such as manufacturing systems and transportation systems. Given the intrinsic complex spatial and temporal correlations of such data, short-term and long-term ... 详细信息
来源: 评论
LVDiffusor: Distilling Functional Rearrangement Priors From Large Models Into Diffusor
收藏 引用
IEEE robotics AND automation LETTERS 2024年 第10期9卷 8258-8265页
作者: Zeng, Yiming Wu, Mingdong Yang, Long Zhang, Jiyao Ding, Hao Cheng, Hui Dong, Hao Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou 510275 Peoples R China Peking Univ Sch CS Hyperplane Lab Beijing 100871 Peoples R China Peking Univ Natl Key Lab Multimedia Informat Proc Beijing 100871 Peoples R China Beijing Acad Artificial Intelligence Beijing 100084 Peoples R China
Object rearrangement, a fundamental challenge in robotics, demands versatile strategies to handle diverse objects, configurations, and functional needs. To achieve this, the AI robot needs to learn functional rearrang... 详细信息
来源: 评论
Ground Segmentation From Large-Scale Terrestrial Laser Scanner data of Industrial Environments
收藏 引用
IEEE robotics AND automation LETTERS 2017年 第4期2卷 1948-1955页
作者: Giorgini, M. Barbieri, F. Aleotti, J. Elettr 80 Spa I-42030 Viano RE Italy Univ Parma Dept Engn & Architecture I-43121 Parma Italy
Inmany 3-D perception applications, ground segmentation is a necessary preprocessing phase together with point cloud cleaning and outlier removal. This letter presents a method for ground segmentation in large-scale p... 详细信息
来源: 评论
LaND: Learning to Navigate From Disengagements
收藏 引用
IEEE robotics AND automation LETTERS 2021年 第2期6卷 1872-1879页
作者: Kahn, Gregory Abbeel, Pieter Levine, Sergey Univ Calif Berkeley Berkeley CA 94710 USA
Consistently testing autonomous mobile robots in real world scenarios is a necessary aspect of developing autonomous navigation systems. Each time the human safety monitor disengages the robot's autonomy system du... 详细信息
来源: 评论
Language Models as Zero-Shot Trajectory Generators
收藏 引用
IEEE robotics AND automation LETTERS 2024年 第7期9卷 6728-6735页
作者: Kwon, Teyun Di Palo, Norman Johns, Edward Imperial Coll London Robot Learning Lab London SW7 2AZ England
Large Language Models (LLMs) have recently shown promise as high-level planners for robots when given access to a selection of low-level skills. However, it is often assumed that LLMs do not possess sufficient knowled... 详细信息
来源: 评论
DALL-E-Bot: Introducing Web-Scale Diffusion Models to robotics
收藏 引用
IEEE robotics AND automation LETTERS 2023年 第7期8卷 3956-3963页
作者: Kapelyukh, Ivan Vosylius, Vitalis Johns, Edward Imperial Coll London Robot Learning Lab London SW7 2AZ England Imperial Coll London Dyson Robot Lab London SW7 2AZ England
We introduce the first work to explore web-scale diffusion models for robotics. DALL-E-Bot enables a robot to rearrange objects in a scene, by first inferring a text description of those objects, then generating an im... 详细信息
来源: 评论
Federated Imitation Learning: A Novel Framework for Cloud Robotic Systems With Heterogeneous Sensor data
收藏 引用
IEEE robotics AND automation LETTERS 2020年 第2期5卷 3509-3516页
作者: Liu, Boyi Wang, Lujia Liu, Ming Xu, Cheng-Zhong Chinese Acad Sci Shenzhen Inst Adv Technol Cloud Comp Lab Shenzhen 518000 Peoples R China Univ Chinese Acad Sci Shenzhen 518000 Peoples R China Hong Kong Univ Sci & Technol Dept ECE Hong Kong Peoples R China Univ Macau Macau 999078 Peoples R China
Humans are capable of learning a new behavior by observing others to perform the skill. Similarly, robots can also implement this by imitation learning. Furthermore, if with external guidance, humans can master the ne... 详细信息
来源: 评论
BADGR: An Autonomous Self-Supervised Learning-Based Navigation System
收藏 引用
IEEE robotics AND automation LETTERS 2021年 第2期6卷 1312-1319页
作者: Kahn, Gregory Abbeel, Pieter Levine, Sergey Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA 94710 USA
Mobile robot navigation is typically regarded as a geometric problem, in which the robot's objective is to perceive the geometry of the environment in order to plan collision-free paths towards a desired goal. How... 详细信息
来源: 评论
Effects of Extended Stochastic Gradient Descent Algorithms on Improving Latent Factor-Based Recommender Systems
收藏 引用
IEEE robotics AND automation LETTERS 2019年 第2期4卷 618-624页
作者: Luo, Xin Zhou, MengChu Dongguan Univ Technol Sch Comp Sci & Technol Dongguan 523808 Peoples R China Chinese Acad Sci Chongqing Engn Res Ctr Big Data Applicat Smart Ci Chongqing 400714 Peoples R China Chinese Acad Sci Chongqing Inst Green & Intelligent Technol Chongqing Key Lab Big Data & Intelligent Comp Chongqing 400714 Peoples R China New Jersey Inst Technol Dept Elect & Comp Engn Newark NJ 07102 USA
High-dimensional and sparse (HiDS) matrices from recommender systems contain various useful patterns. A latent factor (LF) analysis is highly efficient in grasping these patterns. Stochastic gradient descent (SGD) is ... 详细信息
来源: 评论