咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 4 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 16 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 工学
    • 11 篇 计算机科学与技术...
    • 2 篇 控制科学与工程
    • 2 篇 石油与天然气工程
    • 2 篇 软件工程
    • 1 篇 电气工程
  • 10 篇 理学
    • 10 篇 数学
    • 3 篇 统计学(可授理学、...

主题

  • 16 篇 bilinear algorit...
  • 5 篇 matrix multiplic...
  • 3 篇 fast matrix mult...
  • 2 篇 additive complex...
  • 1 篇 tensor decomposi...
  • 1 篇 trilinear aggreg...
  • 1 篇 symmetrian särke...
  • 1 篇 polynomial compo...
  • 1 篇 computational co...
  • 1 篇 tensor contracti...
  • 1 篇 winograd convolu...
  • 1 篇 fast recursive t...
  • 1 篇 polynomial multi...
  • 1 篇 polynomial facto...
  • 1 篇 asymptotic arith...
  • 1 篇 feasible matrix ...
  • 1 篇 samankaltaisuush...
  • 1 篇 analysis of algo...
  • 1 篇 symmetries
  • 1 篇 rectangular matr...

机构

  • 4 篇 hebrew univ jeru...
  • 2 篇 univ illinois de...
  • 1 篇 chechen state un...
  • 1 篇 hebrew univ jeru...
  • 1 篇 saarland univers...
  • 1 篇 cuny herbert h l...
  • 1 篇 swiss fed inst t...
  • 1 篇 department of co...
  • 1 篇 technion israel ...
  • 1 篇 stanford univ de...
  • 1 篇 nanyang technol ...
  • 1 篇 aalto university
  • 1 篇 cuny dept math &...
  • 1 篇 univ calif berke...
  • 1 篇 tel aviv univ te...
  • 1 篇 moscow state uni...
  • 1 篇 cuny grad sch & ...
  • 1 篇 univ calif berke...
  • 1 篇 cuny grad ctr ny...

作者

  • 5 篇 schwartz oded
  • 2 篇 karstadt elaye
  • 2 篇 lysikov v.v.
  • 2 篇 pan vy
  • 2 篇 solomonik edgar
  • 1 篇 ju caleb
  • 1 篇 chokaev b.v.
  • 1 篇 hoefler torsten
  • 1 篇 pan v. ya.
  • 1 篇 karppa matti
  • 1 篇 kaminski michael
  • 1 篇 spiizer yuval
  • 1 篇 xing chaoping
  • 1 篇 hadas tor
  • 1 篇 beniamini gal
  • 1 篇 robert l. prober...
  • 1 篇 nissim roy
  • 1 篇 huang xh
  • 1 篇 trefilov a.p.
  • 1 篇 demmel james

语言

  • 16 篇 英文
检索条件"主题词=bilinear algorithms"
16 条 记 录,以下是11-20 订阅
排序:
Towards Practical Fast Matrix Multiplication based on Trilinear Aggregation  23
Towards Practical Fast Matrix Multiplication based on Trilin...
收藏 引用
48th International Symposium on Symbolic and Algebraic Computation (ISSAC)
作者: Hadas, Tor Schwartz, Oded Hebrew Univ Jerusalem Jerusalem Israel
Pan's four decades old fast matrix multiplication algorithms have the lowest asymptotic complexity of all currently known algorithms applicable to matrices of feasible dimensions. However, the large coefficients i... 详细信息
来源: 评论
Minimizing I/O in Toom-Cook algorithms  30th
Minimizing I/O in Toom-Cook Algorithms
收藏 引用
30th European Conference on Parallel and Distributed Processing (Euro-Par)
作者: Nissim, Roy Schwartz, Oded Spiizer, Yuval Hebrew Univ Jerusalem Jerusalem Israel Tel Aviv Univ Tel Aviv Israel
Long integer multiplication is a fundamental kernel in many linear algebra and cryptography computations. Toom-Cook-k (k is an element of N) are a family of fast long integer multiplication algorithms frequently used ... 详细信息
来源: 评论
Faster Matrix Multiplication via Sparse Decomposition  19
Faster Matrix Multiplication via Sparse Decomposition
收藏 引用
31st ACM Symposium on Parallelism in algorithms and Architecturess (SPAA)
作者: Beniamini, Gal Schwartz, Oded Hebrew Univ Jerusalem Jerusalem Israel
Fast matrix multiplication algorithms are of practical use only if the leading coefficient of their arithmetic complexity is sufficiently small. Many algorithms with low asymptotic cost have large leading coefficients... 详细信息
来源: 评论
On the Additive Complexity of Matrix Multiplication
收藏 引用
SIAM Journal on Computing 1976年 第2期5卷 187-203页
作者: Robert L. Probert
A graph-theoretic model is introduced for bilinear algorithms. This facilitates in particular the investigation of the additive complexity of matrix multiplication. The number of additions/subtractions required for ea... 详细信息
来源: 评论
Fast matrix multiplication and its algebraic neighbourhood
收藏 引用
SBORNIK MATHEMATICS 2017年 第11期208卷 1661-1704页
作者: Pan, V. Ya. CUNY Dept Math & Comp Sci Lehman Coll Bronx NY 10468 USA CUNY Grad Ctr New York NY 10036 USA
Matrix multiplication is among the most fundamental operations of modern computations. By 1969 it was still commonly believed that the classical algorithm was optimal, although the experts already knew that this was n... 详细信息
来源: 评论
Matrix Multiplication, a Little Faster
收藏 引用
JOURNAL OF THE ACM 2020年 第1期67卷 1-1页
作者: Karstadt, Elaye Schwartz, Oded Hebrew Univ Jerusalem Sch Comp Sci & Engn Rothberg Family BldgEdmond J Safra Campus IL-9190416 Jerusalem Israel
Strassen's algorithm (1969) was the first sub-cubic matrix multiplication algorithm. Winograd (1971) improved the leading coefficient of its complexity from 6 to 7. There have been many subsequent asymptotic impro... 详细信息
来源: 评论