咨询与建议

限定检索结果

文献类型

  • 191 篇 期刊文献
  • 140 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 296 篇 工学
    • 178 篇 计算机科学与技术...
    • 119 篇 电气工程
    • 45 篇 信息与通信工程
    • 41 篇 控制科学与工程
    • 26 篇 石油与天然气工程
    • 17 篇 软件工程
    • 14 篇 电子科学与技术(可...
    • 12 篇 机械工程
    • 12 篇 动力工程及工程热...
    • 12 篇 生物医学工程(可授...
    • 10 篇 仪器科学与技术
    • 6 篇 环境科学与工程(可...
    • 5 篇 交通运输工程
    • 5 篇 生物工程
    • 4 篇 材料科学与工程(可...
    • 3 篇 力学(可授工学、理...
    • 2 篇 光学工程
    • 2 篇 测绘科学与技术
  • 42 篇 管理学
    • 41 篇 管理科学与工程(可...
  • 40 篇 理学
    • 13 篇 数学
    • 13 篇 生物学
    • 9 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 3 篇 化学
    • 3 篇 系统科学
    • 2 篇 地球物理学
  • 18 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 3 篇 特种医学
  • 4 篇 农学
  • 3 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 教育学

主题

  • 332 篇 binary particle ...
  • 61 篇 feature selectio...
  • 27 篇 feature extracti...
  • 22 篇 face recognition
  • 18 篇 support vector m...
  • 17 篇 genetic algorith...
  • 15 篇 particle swarm o...
  • 9 篇 classification
  • 8 篇 iris recognition
  • 8 篇 demand side mana...
  • 8 篇 optimization
  • 8 篇 discrete cosine ...
  • 8 篇 swarm intelligen...
  • 8 篇 smart grid
  • 8 篇 image pre-proces...
  • 8 篇 discrete wavelet...
  • 6 篇 gene selection
  • 6 篇 unit commitment
  • 5 篇 mahalanobis-tagu...
  • 5 篇 support vector m...

机构

  • 12 篇 ms ramaiah inst ...
  • 9 篇 sjb inst tech de...
  • 5 篇 ms ramaiah inst ...
  • 4 篇 department of el...
  • 4 篇 univ jinan sch i...
  • 4 篇 department of el...
  • 3 篇 comsats inst inf...
  • 3 篇 ms ramaiah inst ...
  • 3 篇 fujian univ tech...
  • 3 篇 sjb inst technol...
  • 2 篇 nanjing normal u...
  • 2 篇 nanjing inst tec...
  • 2 篇 univ ghent mech ...
  • 2 篇 minjiang univ de...
  • 2 篇 univ gadjah mada...
  • 2 篇 technol inst sal...
  • 2 篇 osaka prefecture...
  • 2 篇 sjb inst technol...
  • 2 篇 univ jendouba fa...
  • 2 篇 fujian univ tech...

作者

  • 22 篇 manikantan k.
  • 16 篇 ramachandran s.
  • 6 篇 s. ramachandran
  • 6 篇 k. manikantan
  • 4 篇 liu yang
  • 4 篇 chen yuehui
  • 4 篇 javaid nadeem
  • 4 篇 jurado f.
  • 3 篇 deris safaai
  • 3 篇 li guoliang
  • 3 篇 sheikhan mansour
  • 3 篇 xiao ke
  • 3 篇 zhou jin
  • 3 篇 fourati rahma
  • 3 篇 yoshioka michifu...
  • 3 篇 yaghoubi vahid
  • 3 篇 resendiz-flores ...
  • 3 篇 omatu sigeru
  • 3 篇 cheng liangliang
  • 3 篇 chuang li-yeh

语言

  • 323 篇 英文
  • 7 篇 其他
  • 2 篇 中文
检索条件"主题词=binary Particle Swarm Optimization"
332 条 记 录,以下是91-100 订阅
排序:
Optimal phasor measurement units placement to maintain network observability using a novel binary particle swarm optimization and fuzzy system
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2015年 第1期28卷 477-483页
作者: Abiri, Ebrahim Rashidi, Farzan Shiraz Univ Technol Elect & Elect Engn Dept Shiraz Iran
This paper presents a hybrid modified binary particle swarm optimization and fuzzy system for obtaining the optimal number of PMUs which makes the power system completely observable. Observability assessment is done b... 详细信息
来源: 评论
Identification of influential observations based on binary particle swarm optimization in the cox PH model
收藏 引用
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION 2020年 第3期49卷 567-590页
作者: Sancar, Nuriye Inan, Deniz Near East Univ Dept Math CY-99138 Nicosia Cyprus Marmara Univ Dept Stat Istanbul Turkey
Proper identification of influential observations should be an integral and significant part of the Cox modeling process. This is because the failure to identify influential observations may have negative effect on th... 详细信息
来源: 评论
Mahalanobis classification system (MCS) integrated with binary particle swarm optimization for robust quality classification of complex metallic turbine blades
收藏 引用
MECHANICAL SYSTEMS AND SIGNAL PROCESSING 2021年 146卷
作者: Cheng, Liangliang Yaghoubi, Vahid Van Paepegem, Wim Kersemans, Mathias Univ Ghent Mech Mat & Struct MMS Technol Pk 46 B-9052 Zwijnaarde Belgium SIM Program M3 DETECT ION Technol Pk 48 B-9052 Zwijnaarde Belgium
Performing non-destructive testing on metallic components with very complex geometries, such as turbine blades, is very challenging. To inspect such components, powerful and robust non-destructive inspection protocols... 详细信息
来源: 评论
EEG channel selection-based binary particle swarm optimization with recurrent convolutional autoencoder for emotion recognition
收藏 引用
BIOMEDICAL SIGNAL PROCESSING AND CONTROL 2023年 84卷
作者: Kouka, Najwa Fourati, Rahma Fdhila, Raja Siarry, Patrick Alimi, Adel M. Natl Engn Sch Sfax ENIS Univ Sfax Res Grp Intelligent Machines BP 1173 1173 Sfax 3038 Tunisia Univ Paris Est Lab Image Signaux & Syst Intelligents LISSI F-94400 Creteil France Univ Johannesburg Fac Engn & Built Environm Dept Elect & Elect Engn Sci Johannesburg South Africa
Electroencephalography (EEG) signals can demonstrate the activities of the human brain and recognize different emotional states. Emotion recognition based on full EEG channels leads to the use of redundant data and in... 详细信息
来源: 评论
Accelerating Analytics Using Improved binary particle swarm optimization for Discrete Feature Selection
收藏 引用
COMPUTER JOURNAL 2022年 第10期65卷 2547-2569页
作者: Moorthy, Rajalakshmi Shenbaga Pabitha, P. St Josephs Inst Technol Dept Comp Sci & Engn Chennai 600119 Tamil Nadu India Anna Univ Chennai Madras Inst Technol Campus Dept Comp Technol Chennai 600044 Tamil Nadu India
Feature selection, a combinatorial optimization problem, remains broadly applied in the area of Computational Learning with the aim to construct a model with reduced features so as to improve the performance of the mo... 详细信息
来源: 评论
A New Affine Arithmetic-Based Optimal Network Reconfiguration to Minimize Losses in a Distribution System Considering Uncertainty Using binary particle swarm optimization
收藏 引用
ELECTRIC POWER COMPONENTS AND SYSTEMS 2020年 第6-7期48卷 628-639页
作者: Raj, Vinod Kumar, Boddeti Kalyan Indian Inst Technol Madras Dept Elect Engn Chennai 600036 Tamil Nadu India
In the present work, binary particle swarm optimization (BPSO) based optimal re-configuration for balanced and unbalanced radial distribution networks using Affine Arithmetic (AA), with uncertainty in generation and l... 详细信息
来源: 评论
Improved binary particle swarm optimization for the deterministic security-constrained transmission network expansion planning problem
收藏 引用
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS 2023年 150卷
作者: Garcia-Mercado, Josue Isai Gutierrez-Alcaraz, Guillermo Gonzalez-Cabrera, N. Tecnol Nacl Mexico IT Morelia Dept Elect Engn Morelia Michoacan Mexico Natl Autonomous Univ Mexico UNAM Dept Elect Energy Mexico City DF Mexico
- This paper proposes an improved version of binary particle swarm optimization (BPSO) to solve the securityconstrained transmission network expansion planning (TNEP) problem using the DC network model. Some modificat... 详细信息
来源: 评论
SEM-Net: Deep features selections with binary particle swarm optimization Method for classification of scanning electron microscope images
收藏 引用
MATERIALS TODAY COMMUNICATIONS 2021年 27卷
作者: Kavuran, Gurkan Malatya Turgut Ozal Univ Fac Engn & Nat Sci Dept Elect & Elect Engn Malatya Turkey
Materials Science is increasingly handling artificial intelligence methods to address the complexity in the field of everyday life necessities. Researchers in both academia and industry are interested in imaging techn... 详细信息
来源: 评论
A binary particle swarm optimization-based pruning approach for environmentally sustainable and robust CNNs
收藏 引用
NEUROCOMPUTING 2024年 608卷
作者: Tmamna, Jihene Fourati, Rahma Ben Ayed, Emna Passos, Leandro A. Papa, Joao P. Ben Ayed, Mounir Hussain, Amir Univ Sfax Natl Engn Sch Sfax ENIS Res Grp Intelligent Machines BP 1173 Sfax 3038 Tunisia Univ Jendouba Fac Sci Jurid Econ & Gest Jendouba Jendouba 8189 Tunisia Polytech Sfax IPSAS Ind Res Lab 4 0 Ave 5 AugustRue Said Aboubaker Sfax 3002 Tunisia Sao Paulo State Univ Sch Sci Sao Paulo Brazil Univ Sfax Fac Sci Sfax Comp Sci & Commun Dept Sfax Tunisia Edinburgh Napier Univ Sch Comp Edinburgh Scotland
Deep Convolutional Neural Networks (CNNs), continue to demonstrate remarkable performance across various tasks. However, their computational demands and energy consumption present significant drawbacks, restricting th... 详细信息
来源: 评论
Feature Selection of Input Variables for Intelligence Joint Moment Prediction Based on binary particle swarm optimization
收藏 引用
IEEE ACCESS 2019年 7卷 182289-182295页
作者: Xiong, Baoping Li, Yurong Huang, Meilan Shi, Wuxiang Du, Min Yang, Yuan Fuzhou Univ Coll Phys & Informat Engn Fuzhou 350116 Peoples R China Fujian Univ Technol Dept Math & Phys Fuzhou 350116 Peoples R China Fuzhou Univ Fujian Key Lab Med Instrumentat & Pharmaceut Tech Fuzhou 350116 Peoples R China Northwestern Univ Dept Phys Therapy & Human Movement Sci Chicago IL 60208 USA Wuyi Univ Fujian Prov Key Lab Ecoind Green Technol Wuyishan 354300 Peoples R China
Joint moment is an important parameter for a quantitative assessment of human motor function. However, most existing joint moment prediction methods lacking feature selection of optimal inputs subset, which reduced th... 详细信息
来源: 评论