binaryconvolutional neuralnetworks (BCNNs) provide a potential solution to reduce the memory requirements and computational costs associated with deep neuralnetworks (DNNs). However, achieving a trade-off between p...
详细信息
ISBN:
(纸本)9798350386851;9798350386844
binaryconvolutional neuralnetworks (BCNNs) provide a potential solution to reduce the memory requirements and computational costs associated with deep neuralnetworks (DNNs). However, achieving a trade-off between performance and computational resources remains a significant challenge. Furthermore, the fully connected layer of BCNNs has evolved into a significant computational bottleneck. This is mainly due to the conventional practice of excluding the input layer and fully connected layer from binarization to prevent a substantial loss in accuracy. In this paper, we propose a hybrid model named ReActXGB, where we replace the fully convolutional layer of ReActNet-A with XGBoost. This modification targets to narrow the performance gap between BCNNs and real-valued networks while maintaining lower computational costs. Experimental results on the FashionMNIST benchmark demonstrate that ReActXGB outperforms ReActNet-A by 1.47% in top-1 accuracy, along with a reduction of 7.14% in floating-point operations (FLOPs) and 1.02% in model size.
Neuroscience is a swiftly progressing discipline that aims to unravel the intricate workings of the human brain and mind. Brain tumors, ranging from non-cancerous to malignant forms, pose a significant diagnostic chal...
详细信息
Neuroscience is a swiftly progressing discipline that aims to unravel the intricate workings of the human brain and mind. Brain tumors, ranging from non-cancerous to malignant forms, pose a significant diagnostic challenge due to the presence of more than 100 distinct types. Effective treatment hinges on the precise detection and segmentation of these tumors early. We introduce a cutting-edge deep-learning approach employing a binaryconvolutional neuralnetwork (BCNN) to address this. This method is employed to segment the 10 most prevalent brain tumor types and is a significant improvement over current models restricted to only segmenting four types. Our methodology begins with acquiring MRI images, followed by a detailed preprocessing stage where images undergo binary conversion using an adaptive thresholding method and morphological operations. This prepares the data for the next step, which is segmentation. The segmentation identifies the tumor type and classifies it according to its grade (Grade I to Grade IV) and differentiates it from healthy brain tissue. We also curated a unique dataset comprising 6,600 brain MRI images specifically for this study. The overall performance achieved by our proposed model is 99.36%. The effectiveness of our model is underscored by its remarkable performance metrics, achieving 99.40% accuracy, 99.32% precision, 99.45% recall, and a 99.28% F-Measure in segmentation tasks.
暂无评论