咨询与建议

限定检索结果

文献类型

  • 45 篇 期刊文献
  • 32 篇 会议

馆藏范围

  • 77 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 68 篇 工学
    • 40 篇 计算机科学与技术...
    • 20 篇 电气工程
    • 14 篇 控制科学与工程
    • 10 篇 软件工程
    • 5 篇 光学工程
    • 4 篇 信息与通信工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 冶金工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 矿业工程
    • 1 篇 交通运输工程
  • 27 篇 理学
    • 11 篇 数学
    • 11 篇 物理学
    • 5 篇 生物学
    • 4 篇 化学
    • 3 篇 统计学(可授理学、...
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 8 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 4 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 3 篇 经济学
    • 2 篇 理论经济学
    • 1 篇 应用经济学

主题

  • 77 篇 binary encoding
  • 6 篇 genetic algorith...
  • 5 篇 differential evo...
  • 4 篇 optimization
  • 3 篇 convergence
  • 3 篇 one-hot encoding
  • 3 篇 encoding
  • 2 篇 deep learning
  • 2 篇 multidimensional...
  • 2 篇 m-ary encoding
  • 2 篇 support vector m...
  • 2 篇 combinatorial op...
  • 2 篇 hyperspectral im...
  • 2 篇 semi-probability...
  • 2 篇 super resolution
  • 2 篇 premature conver...
  • 2 篇 genetic algorith...
  • 2 篇 feature extracti...
  • 2 篇 probability esti...
  • 2 篇 feature selectio...

机构

  • 3 篇 sichuan univ nat...
  • 3 篇 st johns univ de...
  • 2 篇 sichuan univ col...
  • 2 篇 xidian univ sch ...
  • 1 篇 natl forens sci ...
  • 1 篇 okan univ fac en...
  • 1 篇 univ johannesbur...
  • 1 篇 chinese univ hon...
  • 1 篇 geol survey denm...
  • 1 篇 peking univ sch ...
  • 1 篇 rajshahi univ en...
  • 1 篇 univ palermo dep...
  • 1 篇 univ elect sci &...
  • 1 篇 institute of cel...
  • 1 篇 johannes kepler ...
  • 1 篇 jiujiang univ sc...
  • 1 篇 national laborat...
  • 1 篇 ingenieurgrp bau...
  • 1 篇 sun yat sen univ...
  • 1 篇 rajshahi univ de...

作者

  • 3 篇 lin kuang tsan
  • 3 篇 zhu jiangping
  • 3 篇 zhou pei
  • 2 篇 menhas muhammad ...
  • 2 篇 fu xiping
  • 2 篇 liu ning
  • 2 篇 amir samir
  • 2 篇 he zhoumiao
  • 2 篇 wang ling
  • 2 篇 fei minrui
  • 2 篇 maniscalco vince...
  • 2 篇 ait-kaci hassan
  • 2 篇 polito silvana g...
  • 1 篇 chen xiaoyan
  • 1 篇 yeh sheng lih
  • 1 篇 sugiyama mahito
  • 1 篇 fagiolini adrian...
  • 1 篇 yuan chen
  • 1 篇 cui xiaowen
  • 1 篇 li xin

语言

  • 72 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"主题词=binary encoding"
77 条 记 录,以下是31-40 订阅
排序:
Exploring the Merit of Collaboration in Classification and Compression of Epilepsy EEG Signal  13
Exploring the Merit of Collaboration in Classification and C...
收藏 引用
13th International Joint Conference on Biomedical Engineering Systems and Technologies
作者: Ahmad, Rushda Basir Khan, Nadeem Ahmad Lahore Univ Management Sci Dept Elect Engn Lahore Pakistan
Ambulatory electroencephalogram (EEG), allows collection of patients data over extended periods of time. However, as a small recording requires large memory for storage, and this makes EEG data storage an arduous task... 详细信息
来源: 评论
UbiSitePred: A novel method for improving the accuracy of ubiquitination sites prediction by using LASSO to select the optimal Chou's pseudo components
收藏 引用
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS 2019年 184卷 28-43页
作者: Cui, Xiaowen Yu, Zhaomin Yu, Bin Wang, Minghui Tian, Baoguang Ma, Qin Qingdao Univ Sci & Technol Coll Math & Phys Qingdao 266061 Peoples R China Qingdao Univ Sci & Technol Artificial Intelligence & Biomed Big Data Res Ctr Qingdao 266061 Peoples R China Univ Sci & Technol China Sch Life Sci Hefei 230027 Anhui Peoples R China Univ Calgary Dept Biochem & Mol Biol Med Genet & Oncol Calgary AB T2N 4N1 Canada Ohio State Univ Coll Med Dept Biomed Informat Columbus OH 43210 USA
Ubiquitination is an essential process in protein post-translational modification, which plays a crucial role in cell life activities, such as proteasomal degradation, transcriptional regulation, and DNA damage repair... 详细信息
来源: 评论
Sparse representation based image super-resolution on the KNN based dictionaries
收藏 引用
OPTICS AND LASER TECHNOLOGY 2019年 110卷 135-144页
作者: Liu, Ning Xu, Xing Li, Yujie Zhu, Anna Univ Elect Sci & Technol China Chinese Acad Sci Natl Lab Pattern Recognit Sch Comp Sci & Engn Chengdu Sichuan Peoples R China Univ Elect Sci & Technol China Ctr Future Media Chengdu Sichuan Peoples R China Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu Sichuan Peoples R China Yangzhou Univ Yangzhou Jiangsu Peoples R China Wuhan Univ Technol Wuhan Hubei Peoples R China
This paper addresses the problem of single image super-resolution (SR). In recent years, sparse representation based SR methods have been proposed and achieved great success. Traditional sparse representation based SR... 详细信息
来源: 评论
binary encoding Differential Evolution with Application to Combinatorial Optimization Problem
Binary Encoding Differential Evolution with Application to C...
收藏 引用
2013年中国智能自动化学术会议
作者: Changshou Deng Bingyan Zhao Yanlin Yang Hai Zhang School of Information Science and Technology Jiujiang University
Differential Evolution algorithm is a new competitive heuristic optimization algorithm in the continuous *** operators in the original Differential Evolution are simple;however,these operators make it impossible to us... 详细信息
来源: 评论
VISUALISING AND SOLVING A MAZE USING AN ARTIFICIAL INTELLIGENCE TECHNIQUE
VISUALISING AND SOLVING A MAZE USING AN ARTIFICIAL INTELLIGE...
收藏 引用
IEEE AFRICON Conference - Powering Africa s Sustainable Energy for AD Agenda - The Role ofICT and Engineering.
作者: Sagming, M. N. Heymann, R. Hurwitz, E. Univ Johannesburg Dept Elect & Elect Engn Sci POB 524 ZA-2006 Auckland Pk South Africa
This paper describes the implementation of an artificial intelligence (AI) technique known as Genetic Algorithm (GA), used to solve randomly generated mazes that are of varying sizes and complexity. To evaluate the ef... 详细信息
来源: 评论
Arc Consistency Revisited  16th
Arc Consistency Revisited
收藏 引用
16th International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR)
作者: Wang, Ruiwei Yap, Roland H. C. Natl Univ Singapore Singapore Singapore
binary constraints are a general representation for constraints and is used in Constraint Satisfaction Problems (CSPs). However, many problems are more easily modelled with non-binary constraints (constraints with ari... 详细信息
来源: 评论
DYNAMIC TEXTURE RECOGNITION USING 3D RANDOM FEATURES  44
DYNAMIC TEXTURE RECOGNITION USING 3D RANDOM FEATURES
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Zhao, Xiaochao Lin, Yaping Liu, Li Hunan Univ Hunan Prov Key Lab Trusted Syst & Network Changsha Hunan Peoples R China Univ Oulu Ctr Machine Vis & Signal Anal Oulu Finland Natl Univ Def Technol Coll Syst Engn Changsha Hunan Peoples R China
In this paper, we present a novel, simple but effective approach for dynamic texture recognition using 3D random features. Compared with the existing dynamic texture recognition approaches using carefully designed fea... 详细信息
来源: 评论
Performance Evaluation of Different Feature encoding Schemes on Cybersecurity Logs
Performance Evaluation of Different Feature Encoding Schemes...
收藏 引用
IEEE SoutheastCon Conference
作者: Jackson, Eric Agrawal, Rajeev Engn Reserch & Dev Ctr USA Informat Technol Lab Vicksburg MS 39810 USA
Many cybersecurity logs contain a substantial volume of textual data regarding security events. This data needs to be converted to numerical types before any machine learning (ML) algorithms can be applied. Feature en... 详细信息
来源: 评论
encoding Web-based Data for Efficient Storage in Machine Learning Applications  15
Encoding Web-based Data for Efficient Storage in Machine Lea...
收藏 引用
15th International Conference on Information Processing (ICINPRO) - Internet of Things
作者: Aich, Animikh Krishna, Akshay Akhilesh, V Hegde, Chetana Wobot Intelligence Delhi 110030 India Univ Nebraska Med Ctr Omaha NE 68198 USA Flux Auto Bangalore 560097 Karnataka India Manipal ProLearn Bangalore 560100 Karnataka India
With the advent of the information era, we have seen a huge boom in the amount of data produced over the years, which is primarily the result of the Internet and its billions of users worldwide. The internet is a stor... 详细信息
来源: 评论
Feature Selection Method Based on Hybrid SA-GA and Random Forests
Feature Selection Method Based on Hybrid SA-GA and Random Fo...
收藏 引用
作者: Zibo Zhou Yunfan Wang Man Li School of Information Science and Technology Jinan University
We propose a feature selection algorithm based on hybrid simulated annealing(SA)-genetic algorithm(GA)and random forests,whose procedure can be described as the following ***,set an initial temperature and create an i... 详细信息
来源: 评论