The whaleoptimizationalgorithm (WOA) is an intelligence-based technique that simulates the hunting behaviour of humpback whales in nature. In this article, an adaptation of the original version of the WOA is made fo...
详细信息
The whaleoptimizationalgorithm (WOA) is an intelligence-based technique that simulates the hunting behaviour of humpback whales in nature. In this article, an adaptation of the original version of the WOA is made for handling binaryoptimization problems. For this purpose, two transfer functions (S-shaped and V-shaped) are presented to map a continuous search space to a binary one. To illustrate the functionality and performance of the proposed binary whale optimization algorithm (bWOA), its results when applied on twenty-two benchmark functions, three engineering optimization problems and a real-world travelling salesman problem are found. Furthermore, the proposed bWOA is compared with five well-known metaheuristic algorithms. The experimental results show its superiority in comparison with other state-of-the-art metaheuristics in terms of accuracy and speed. Finally, Wilcoxon's rank-sum non-parametric statistical test is carried out at the 5% significance level to judge whether the results of the proposed algorithm differ from those of the other comparison algorithms in a statistically significant way.
In computational chemistry, the high-dimensional molecular descriptors contribute to the curse of dimensionality issue. binary whale optimization algorithm (BWOA) is a recently proposed metaheuristic optimization algo...
详细信息
In computational chemistry, the high-dimensional molecular descriptors contribute to the curse of dimensionality issue. binary whale optimization algorithm (BWOA) is a recently proposed metaheuristic optimizationalgorithm that has been efficiently applied in feature selection. The main contribution of this paper is a new version of the nonlinear time-varying Sigmoid transfer function to improve the exploitation and exploration activities in the standard whaleoptimizationalgorithm (WOA). A new BWOA algorithm, namely BWOA-3, is introduced to solve the descriptors selection problem, which becomes the second contribution. To validate BWOA-3 performance, a high-dimensional drug dataset is employed. The proficiency of the proposed BWOA-3 and the comparative optimizationalgorithms are measured based on convergence speed, the length of the selected feature subset, and classification performance (accuracy, specificity, sensitivity, and f-measure). In addition, statistical significance tests are also conducted using the Friedman test and Wilcoxon signed-rank test. The comparative optimizationalgorithms include two BWOA variants, binary bat algorithm (BBA), binary gray wolf algorithm (BGWOA), and binary manta-ray foraging algorithm (BMRFO). As the final contribution, from all experiments, this study has successfully revealed the superiority of BWOA-3 in solving the descriptors selection problem and improving the Amphetamine-type Stimulants (ATS) drug classification performance. [GRAPHICS] .
A new chaotic time-varying binary whale optimization algorithm (CBWOATV) is introduced in this paper to optimize the feature selection process in Amphetamine-type Stimulants (ATS) and non-ATS drugs classification. Two...
详细信息
A new chaotic time-varying binary whale optimization algorithm (CBWOATV) is introduced in this paper to optimize the feature selection process in Amphetamine-type Stimulants (ATS) and non-ATS drugs classification. Two enhancement methods were introduced in this study to provide a fit balance between exploration and exploitation in standard WOA. Firstly, a non-linear time-varying modified Sigmoid transfer function is used as the binarization method. Second, a hybrid Logistic-Tent chaotic map is employed to substitute the pseudorandom numbers of the probability operator in standard WOA. Specific high-dimensional molecular descriptors of ATS and non-ATS drugs were employed to evaluate the efficiency of the proposed algorithm. Experimental results and statistical analysis indicate that the proposed CBWOATV algorithm can prevent the problem of stagnation and entrapment in local minima in WOA. As a result, optimal descriptors were selected contributing to enhanced classification performance.
Software fault prediction (SFP) is a challenging process that any successful software should go through it to make sure that all software components are free of faults. In general, soft computing and machine learning ...
详细信息
Software fault prediction (SFP) is a challenging process that any successful software should go through it to make sure that all software components are free of faults. In general, soft computing and machine learning methods are useful in tackling this problem. The size of fault data is usually huge since it is obtained from mining software historical repositories. This data consists of a large number of features (metrics). Determining the most valuable features (i.e., Feature Selection (FS) is an excellent solution to reduce data dimensionality. In this paper, we proposed an enhanced version of the whaleoptimizationalgorithm (WOA) by combining it with a single point crossover method. The proposed enhancement helps the WOA to escape from local optima by enhancing the exploration process. Five different selection methods are employed: Tournament, Roulette wheel, Linear rank, Stochastic universal sampling, and random-based. To evaluate the performance of the proposed enhancement, 17 available SFP datasets are adopted from the PROMISE repository. The deep analysis shows that the proposed approach outperformed the original WOA and the other six state-of-the-art methods, as well as enhanced the overall performance of the machine learning classifier.
Nature is a great source of inspiration for solving complex problems in real-world. In this paper, a hybrid nature-inspired algorithm is proposed for feature selection problem. Traditionally, the real-world datasets c...
详细信息
Nature is a great source of inspiration for solving complex problems in real-world. In this paper, a hybrid nature-inspired algorithm is proposed for feature selection problem. Traditionally, the real-world datasets contain all kinds of features informative as well as non-informative. These features not only increase computational complexity of the underlying algorithm but also deteriorate its performance. Hence, there an urgent need of feature selection method that select an informative subset of features from high dimensional without compromising the performance of the underlying algorithm. In this paper, we select an informative subset of features and perform cluster analysis by employing a cross breed approach of binary particle swarm optimization (BPSO) and sine cosine algorithm (SCA) named as hybrid binary particle swarm optimization and sine cosine algorithm (HBPSOSCA). Here, we employ a V-shaped transfer function to compute the likelihood of changing position for all particles. First, the effectiveness of the proposed method is tested on ten benchmark test functions. Second, the HBPSOSCA is used for data clustering problem on seven real-life datasets taken from the UCI machine learning store and gene expression model selector. The performance of proposed method is tested in comparison to original BPSO, modified BPSO with chaotic inertia weight (C-BPSO), binary moth flame optimizationalgorithm, binary dragonfly algorithm, binary whale optimization algorithm, SCA, and binary artificial bee colony algorithm. The conducted analysis demonstrates that the proposed method HBPSOSCA attain better performance in comparison to the competitive methods in most of the cases.
The whaleoptimizationalgorithm (WOA) is a prominent problem solver which is broadly applied to solve NP -hard problems such as feature selection. However, it and most of its variants suffer from low population diver...
详细信息
The whaleoptimizationalgorithm (WOA) is a prominent problem solver which is broadly applied to solve NP -hard problems such as feature selection. However, it and most of its variants suffer from low population diversity and poor search strategy. Introducing efficient strategies is highly demanded to mitigate these core drawbacks of WOA particularly for dealing with the feature selection problem. Therefore, this paper is devoted to proposing an enhanced whaleoptimizationalgorithm named E-WOA using a pooling mechanism and three effective search strategies named migrating, preferential selecting, and enriched encircling prey. The performance of E-WOA is evaluated and compared with well-known WOA variants to solve global optimization problems. The obtained results proved that the E-WOA outperforms WOA's variants. After E-WOA showed a sufficient performance, then, it was used to propose a binary E-WOA named BE-WOA to select effective features, particularly from medical datasets. The BE-WOA is validated using medical diseases datasets and compared with the latest high-performing optimizationalgorithms in terms of fitness, accuracy, sensitivity, precision, and number of features. Moreover, the BE-WOA is applied to detect coronavirus disease 2019 (COVID-19) disease. The experimental and statistical results prove the efficiency of the BE-WOA in searching the problem space and selecting the most effective features compared to comparative optimizationalgorithms.
暂无评论