Ant colony optimization (ACO for short) is a meta-heuristics for hard combinatorial optimization problems. It is a population-based approach that uses exploitation of positive feedback as well as greedy search. In thi...
详细信息
Ant colony optimization (ACO for short) is a meta-heuristics for hard combinatorial optimization problems. It is a population-based approach that uses exploitation of positive feedback as well as greedy search. In this paper, genetic algorithm's (GA for short) ideas are introduced into ACO to present a new binary-coding based ant colony optimization. Compared with the typical ACO, the algorithm is intended to replace the problem's parameter-space with coding-space, which links ACO with GA so that the fruits of GA can be applied to ACO directly. Furthermore, it can not only solve general combinatorial optimization problems, but also other problems such as function optimization. Based on the algorithm, it is proved that if the pheromone remainder factor rho is under the condition of rho greater than or equal to 1, the algorithm can promise to converge at the optimal, whereas if 0 < rho < 1, it does not.
This paper presents a real jumping gene genetic algorithm (RJGGA) as an enhancement of the jumping gene genetic algorithm (JGGA) [T.M. Chan, K.F. Man, K.S. Tang, S. Kwong, A jumping gene algorithm for multiobjective r...
详细信息
This paper presents a real jumping gene genetic algorithm (RJGGA) as an enhancement of the jumping gene genetic algorithm (JGGA) [T.M. Chan, K.F. Man, K.S. Tang, S. Kwong, A jumping gene algorithm for multiobjective resource management in wideband CDMA systems, The Computer Journal 48 (6) (2005) 749-768;T.M. Chan, K.F. Man, K.S. Tang, S. Kwong, Multiobjective optimization of radio-to-fiber repeater placement using a jumping gene algorithm, in: Proceedings of the IEEE International Conference on Industrial Technology (ICIT 2005), Hong Kong, 2005, pp. 291-296;K.F. Man, T.M. Chan, K.S. Tang, S. Kwong, Jumping-genes in evolutionary computing, in: Proceedings of the IEEE IECON'2004, Busan, 2004, pp, 1268-1272]. JGGA is a relatively new multiobjective evolutionary algorithm (MOEA) that imitates a jumping gene phenomenon discovered by Nobel Laureate McClintock during her work on the corn plants. The main feature of JGGA is that it only has a simple operation in which a transposition of gene(s) is induced within the same or another chromosome in the genetic algorithm (GA) framework. In its initial formulation, the search space solutions are binary-coded and it inherits the customary problems of conventional binary-coded GA (BCGA). This issue motivated us to remodel the JGGA into RJGGA. The performance of RJGGA has been compared to other MOEAs using some carefully chosen benchmark test functions. It has been observed that RJGGA is able to generate non-dominated solutions with a wider spread along the Pareto-optimal front and better address the issues regarding convergence and diversity in multiobjective optimization. (C) 2006 Elsevier Inc. All rights reserved.
暂无评论