咨询与建议

限定检索结果

文献类型

  • 62 篇 期刊文献
  • 39 篇 会议
  • 1 册 图书
  • 1 篇 学位论文

馆藏范围

  • 103 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 89 篇 工学
    • 50 篇 计算机科学与技术...
    • 34 篇 电气工程
    • 18 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 11 篇 软件工程
    • 9 篇 机械工程
    • 7 篇 电子科学与技术(可...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 3 篇 石油与天然气工程
    • 3 篇 环境科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 土木工程
    • 2 篇 测绘科学与技术
    • 2 篇 网络空间安全
  • 17 篇 理学
    • 5 篇 数学
    • 3 篇 系统科学
    • 3 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 生物学
    • 1 篇 化学
  • 13 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 7 篇 医学
    • 5 篇 临床医学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 教育学
    • 2 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 2 篇 文学
    • 2 篇 新闻传播学
  • 2 篇 农学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 103 篇 boosting algorit...
  • 15 篇 machine learning
  • 7 篇 ensemble learnin...
  • 5 篇 adaboost
  • 5 篇 classification
  • 4 篇 face detection
  • 3 篇 intrusion detect...
  • 3 篇 support vector r...
  • 3 篇 fault diagnosis
  • 3 篇 random forest
  • 3 篇 support vector m...
  • 3 篇 svm
  • 3 篇 anomaly detectio...
  • 3 篇 generalization e...
  • 3 篇 intrusion detect...
  • 3 篇 churn prediction
  • 3 篇 compressed domai...
  • 3 篇 learning (artifi...
  • 3 篇 accuracy
  • 3 篇 weak classifier

机构

  • 2 篇 cv raman global ...
  • 2 篇 wuhan univ sci &...
  • 2 篇 persistent syst ...
  • 1 篇 s china normal u...
  • 1 篇 city univ hong k...
  • 1 篇 thomas jefferson...
  • 1 篇 gerdau ouro bran...
  • 1 篇 co. ltd jinhua
  • 1 篇 northwestern uni...
  • 1 篇 china univ geosc...
  • 1 篇 vignan inst tech...
  • 1 篇 institut teknolo...
  • 1 篇 university of ca...
  • 1 篇 lanzhou vocation...
  • 1 篇 systems engineer...
  • 1 篇 univ naples fede...
  • 1 篇 eastern inst tec...
  • 1 篇 cent s univ info...
  • 1 篇 master of inform...
  • 1 篇 beihang univ sch...

作者

  • 2 篇 zhang xiaolong
  • 2 篇 priyadarshini ro...
  • 2 篇 thakor devendra
  • 2 篇 kharwar ankit
  • 1 篇 sarigiannidis g.
  • 1 篇 jiji c. victor
  • 1 篇 zhao rc
  • 1 篇 jafari arezou
  • 1 篇 roy diptendu sin...
  • 1 篇 ben letaifa asma
  • 1 篇 nishat mirza mun...
  • 1 篇 liska gilberto r...
  • 1 篇 zhang chunyang
  • 1 篇 chatzisavvas k. ...
  • 1 篇 sieg miriam
  • 1 篇 fujii hiromitsu
  • 1 篇 raisa fatima fai...
  • 1 篇 zhang yancong
  • 1 篇 yu chongchong
  • 1 篇 li yonggang

语言

  • 99 篇 英文
  • 2 篇 其他
  • 2 篇 中文
检索条件"主题词=boosting algorithm"
103 条 记 录,以下是21-30 订阅
排序:
Stratification of High-Risk Hypertensive Patients Using Hybrid Heart Rate Variability Features and boosting algorithms
收藏 引用
IEEE ACCESS 2021年 9卷 62665-62675页
作者: Deka, Dipen Deka, Bhabesh Cent Inst Technol CIT Kokrajhar Dept Instrumentat Engn Kokrajhar 783370 India Tezpur Univ Sch Engn Dept Elect & Commun Engn ECE Tezpur 784028 Assam India
Hypertension is a global challenge to the public health which can easily lead to life-threatening vascular diseases unless control measures are adopted. Considering the prevalence of vascular diseases and their fatali... 详细信息
来源: 评论
An efficient intrusion detection system using a boosting-based learning algorithm
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY 2006年 第4期27卷 223-231页
作者: Yu, Zhenwei Tsai, Jeffrey J. P. Univ Illinois Dept Comp Sci 851 S Morgan StRoom 1120SEO Chicago IL 60607 USA
boosting is effective in improving the accuracy of a learner. In this paper, we present our research in developing a Multi-Class SLIPPER (MC-SLIPPER) system for intrusion detection from a boosting-based learning algor... 详细信息
来源: 评论
Study on the influence of surrounding urbanSO2,NO2, andCOon haze formation in Beijing based onMF-DCCAand boosting algorithms
收藏 引用
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE 2020年 第24期32卷 e5921-e5921页
作者: Zhang, Xin-xin Gu, Lei-lei Chen, Hong Jia, Guo-zhu Sichuan Normal Univ Coll Phys & Elect Engn Chengdu 610101 Peoples R China
The formation of haze depends on the complex evolution behavior of SO2, NO2, and CO. We explore the influence of surrounding urban oxides on haze formation in Beijing. From the perspective of time evolution, multifrac... 详细信息
来源: 评论
Imbalanced Data Classification algorithm Based on boosting and Cascade Model
Imbalanced Data Classification Algorithm Based on Boosting a...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics (SMC)
作者: Zhang, Xiaolong Cheng, Chao Wuhan Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430081 Peoples R China
Traditional classification algorithms are difficult in dealing with imbalance data. This paper proposes a classification algorithm called CascadeBoost, which combines with the advantages of boosting algorithm and casc... 详细信息
来源: 评论
Performance Investigation of Different boosting algorithms in Predicting Chronic Kidney Disease  2
Performance Investigation of Different Boosting Algorithms i...
收藏 引用
2nd International Conference on Sustainable Technologies for Industry 4.0 (STI)
作者: Nishat, Mirza Muntasir Faisal, Fahim Dip, Rezuanur Rahman Shikder, Md Fahim Ahsan, Ragib Asif, Md Asfi-Ar-Raihan Udoy, Mahmudul Hasan Islamic Univ Technol Dept Elect & Elect Engn Dhaka Bangladesh
This paper implies an investigative approach to study the performance of different boosting algorithms in predicting chronic kidney disease (CKD) more accurately. In recent years, CKD has reached a global prevalence w... 详细信息
来源: 评论
Self-supervised representation learning anomaly detection methodology based on boosting algorithms enhanced by data augmentation using StyleGAN for manufacturing imbalanced data
收藏 引用
COMPUTERS IN INDUSTRY 2023年 153卷
作者: Kim, Yoonseok Lee, Taeheon Hyun, Youngjoo Coatanea, Eric Mika, Siren Mo, Jeonghoon Yoo, Youngjun Korea Inst Ind Tech KITECH Ansan South Korea Yonsei Univ Dept Informat & Ind Engn Seoul South Korea Tampere Univ Mfg Engn & Syst Engn Tampere Finland VTT Tech Res Ctr Finland Helsinki Finland Korea Inst Ind Tech KITECH 89 Yangdaegiro GilIpjang Myeon Cheonan Si 31056 Chungcheongnam South Korea Engn Bldg D Rm 1004 50 Yonsei Ro Seoul 03722 South Korea
This study proposes a methodology for detecting anomalies in the manufacturing industry using a self-supervised representation learning approach based on deep generative models. The challenge arises from the limited a... 详细信息
来源: 评论
Flood susceptibility mapping using machine learning boosting algorithms techniques in Idukki district of Kerala India
收藏 引用
URBAN CLIMATE 2023年 49卷
作者: Saravanan, Subbarayan Abijith, Devanantham Reddy, Nagireddy Masthan Parthasarathy, K. S. S. Janardhanam, Niraimathi Sathiyamurthi, Subbarayan Sivakumar, Vivek Natl Inst Technol Dept Civil Engn Trichy Tamil Nadu India Natl Inst Technol Karnataka Dept Water Resources & Ocean Engn Surathkal India Annamalai Univ Fac Agr Dept Soil Sci & Agr Chem Annamalainagar Tamilnadu India Hindusthan Coll Engn & Technol Dept Civil Engn Coimbatore India
Kerala experiences a high rate of annual rainfall and flooding resulting in a frequent natural disaster. The objective of this study is to develop flood susceptibility maps for the Idukki district making use of Remote... 详细信息
来源: 评论
An efficient version of inverse boosting for classification
收藏 引用
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL 2013年 第2期35卷 188-199页
作者: Gao, Jingyang Chen, Chenglizhao Zhen, Dantong Zhu, Qunxiong Beijing Univ Chem Technol Coll Informat Sci & Technol Beijing 100029 Peoples R China
This paper gives a survey of the inverse boosting algorithm which employs an inverse error vector to produce new sample distributions. The experimental result shows that the inverse boosting can outperform normal boos... 详细信息
来源: 评论
Salient object detection via boosting object-level distinctiveness and saliency refinement
收藏 引用
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION 2017年 48卷 224-237页
作者: Yan, Xiaoyun Wang, Yuehuan Song, Qiong Dai, Kaiheng Huazhong Univ Sci & Technol Sch Automat Wuhan 430074 Hubei Peoples R China Natl Key Lab Sci & Technol Multi Spectral Informa Wuhan 430074 Hubei Peoples R China
Many salient object detection approaches share the common drawback that they cannot uniformly highlight heterogeneous regions of salient objects, and thus, parts of the salient objects are not discriminated from backg... 详细信息
来源: 评论
Intelligent Impulse Finder: A boosting multi-kernel learning network using raw data for mechanical fault identification in big data era
收藏 引用
ISA TRANSACTIONS 2020年 107卷 402-414页
作者: Chen, Jinglong Chang, Yuanhong Qu, Cheng Zhang, Mingquan Li, Fudong Pan, Jun Xi An Jiao Tong Univ State Key Lab Mfg & Syst Engn Xian 710049 Peoples R China
Nowadays, most intelligent diagnosis methods focus on fault classification and the discriminative knowledge is unknown due to the 'black box' characteristic. However, impulse responses in vibration signals, wh... 详细信息
来源: 评论