Podolsky and Pauling (Phys. Rev. 34, 109 (1929) doi:10.1103/PhysRev.34.109) were the first ones to derive an explicit expression for the Fourier transform of a bound-statehydrogen eigenfunction. Yukcu and Yukcu (Can....
详细信息
Podolsky and Pauling (Phys. Rev. 34, 109 (1929) doi:10.1103/PhysRev.34.109) were the first ones to derive an explicit expression for the Fourier transform of a bound-statehydrogen eigenfunction. Yukcu and Yukcu (Can. J. Phys. 96, 724 (2018) doi:10.1139/cjp-2017-0728), who were apparently unaware of the work of Podolsky and Pauling or of the numerous other earlier references on this Fourier transform, proceeded differently. They expressed a generalized Laguerre polynomial as a finite sum of powers, or equivalently, they expressed a bound-statehydrogen eigenfunction as a finite sum of Slater-type functions. This approach looks very simple, but it leads to comparatively complicated expressions that cannot match the simplicity of the classic result obtained by Podolsky and Pauling. It is, however, possible to reproduce not only Podolsky and Pauling's formula for the bound-statehydrogen eigenfunction, but to obtain results of similar quality also for the Fourier transforms of other, closely related, functions, such as Sturmians, Lambda functions, or Guseinov's functions, by expanding generalized Laguerre polynomials in terms of so-called reduced Bessel functions.
暂无评论