咨询与建议

限定检索结果

文献类型

  • 75 篇 期刊文献
  • 57 篇 会议
  • 6 篇 学位论文

馆藏范围

  • 138 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 94 篇 工学
    • 52 篇 计算机科学与技术...
    • 33 篇 电气工程
    • 25 篇 生物医学工程(可授...
    • 10 篇 信息与通信工程
    • 10 篇 控制科学与工程
    • 5 篇 软件工程
    • 4 篇 机械工程
    • 4 篇 生物工程
    • 3 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 1 篇 材料科学与工程(可...
    • 1 篇 网络空间安全
  • 78 篇 医学
    • 48 篇 基础医学(可授医学...
    • 33 篇 临床医学
    • 31 篇 医学技术(可授医学...
    • 21 篇 特种医学
    • 1 篇 公共卫生与预防医...
    • 1 篇 中西医结合
  • 41 篇 理学
    • 32 篇 生物学
    • 5 篇 物理学
    • 2 篇 数学
    • 1 篇 化学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 11 篇 农学
    • 4 篇 作物学
  • 4 篇 教育学
    • 4 篇 心理学(可授教育学...
  • 2 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 138 篇 brain decoding
  • 44 篇 fmri
  • 17 篇 deep learning
  • 13 篇 functional magne...
  • 12 篇 functional magne...
  • 12 篇 classification
  • 10 篇 decoding
  • 10 篇 machine learning
  • 8 篇 eeg
  • 7 篇 meg
  • 7 篇 feature extracti...
  • 6 篇 transfer learnin...
  • 6 篇 functional conne...
  • 6 篇 neuroimaging
  • 5 篇 brain modeling
  • 5 篇 magnetoencephalo...
  • 4 篇 generative model
  • 4 篇 signal processin...
  • 4 篇 multi-task learn...
  • 4 篇 computational mo...

机构

  • 7 篇 middle east tech...
  • 5 篇 bruno kessler fd...
  • 4 篇 northwestern pol...
  • 3 篇 univ trento dept...
  • 3 篇 nanyang technol ...
  • 3 篇 univ georgia bio...
  • 3 篇 xi an jiao tong ...
  • 2 篇 fdn bruno kessle...
  • 2 篇 imperial coll lo...
  • 2 篇 ecole polytech f...
  • 2 篇 univ georgia dep...
  • 2 篇 hokkaido univ fa...
  • 2 篇 nagaoka univ tec...
  • 2 篇 hokkaido univ fa...
  • 2 篇 univ trento cime...
  • 2 篇 hokkaido univ gr...
  • 2 篇 imperial coll lo...
  • 2 篇 koc univ dept ps...
  • 2 篇 tohoku univ grad...
  • 2 篇 kyoto univ grad ...

作者

  • 12 篇 vural fatos t. y...
  • 6 篇 ozay mete
  • 6 篇 kia seyed mostaf...
  • 6 篇 avesani paolo
  • 5 篇 onal itir
  • 5 篇 olivetti emanuel...
  • 5 篇 haseyama miki
  • 5 篇 ogawa takahiro
  • 4 篇 han junwei
  • 3 篇 harakawa ryosuke
  • 3 篇 van de ville dim...
  • 3 篇 rajapakse jagath...
  • 3 篇 gupta sukrit
  • 3 篇 richiardi jonas
  • 3 篇 hu xintao
  • 3 篇 vuilleumier patr...
  • 3 篇 zhao shijie
  • 3 篇 thirion bertrand
  • 3 篇 chen badong
  • 3 篇 sebe nicu

语言

  • 135 篇 英文
  • 2 篇 其他
  • 1 篇 土耳其文
检索条件"主题词=brain decoding"
138 条 记 录,以下是1-10 订阅
排序:
brain decoding of Viewed Image Categories via Semi-Supervised Multi-View Bayesian Generative Model
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2020年 68卷 5769-5781页
作者: Akamatsu, Yusuke Harakawa, Ryosuke Ogawa, Takahiro Haseyama, Miki Hokkaido Univ Grad Sch Informat Sci & Technol Sapporo Hokkaido 0600814 Japan Nagaoka Univ Technol Dept Elect Elect & Informat Engn Nagaoka Niigata 9402188 Japan Hokkaido Univ Fac Informat Sci & Technol Sapporo Hokkaido 0600814 Japan
brain decoding has shown that viewed image categories can be estimated from evoked functional magnetic resonance imaging (fMRI) activity. Recent studies attempted to estimate viewed image categories that were not used... 详细信息
来源: 评论
brain decoding of Multiple Subjects for Estimating Visual Information Based on a Probabilistic Generative Model
收藏 引用
SENSORS 2022年 第16期22卷 999-1009页
作者: Higashi, Takaaki Maeda, Keisuke Ogawa, Takahiro Haseyama, Miki Hokkaido Univ Grad Sch Informat Sci & Technol Kita Ku N-14W-9 Sapporo Hokkaido 0600814 Japan Hokkaido Univ Fac Informat Sci & Technol Kita Ku N-14W-9 Sapporo Hokkaido 0600814 Japan
brain decoding is a process of decoding human cognitive contents from brain activities. However, improving the accuracy of brain decoding remains difficult due to the unique characteristics of the brain, such as the s... 详细信息
来源: 评论
brain decoding: Opportunities and challenges for pattern recognition
收藏 引用
PATTERN RECOGNITION 2012年 第6期45卷 2033-2034页
作者: De Ville, Dimitri Van Lee, Seong-Whan Univ Geneva Dept Radiol & Med Informat CH-1211 Geneva 4 Switzerland Ecole Polytech Fed Lausanne Inst Bioengn CH-1015 Lausanne Switzerland Korea Univ Dept Brain & Cognit Engn Seoul South Korea
The neuroimaging community heavily relies on statistical inference to explain measured brain activity given the experimental paradigm. Undeniably, this method has led to many results, but it is limited by the richness... 详细信息
来源: 评论
Memory recall: Retrieval-Augmented mind reconstruction for brain decoding
收藏 引用
Information Fusion 2025年 123卷
作者: Yuxiao Zhao Guohua Dong Lei Zhu Xiaomin Ying School of Information Science and Engineering Shandong Normal University Jinan 250358 China Center for Computational Biology Beijing Institute of Basic Medical Sciences Beijing 100850 China School of Computer Science and Technology Tongji University Shanghai 200092 China
Reconstructing visual stimuli from functional magnetic resonance imaging (fMRI) is a complex challenge in neuroscience. Most existing approaches rely on mapping neural signals to pretrained models to generate latent v... 详细信息
来源: 评论
brain decoding from Functional MRI Using Long Short-Term Memory Recurrent Neural Networks  1
收藏 引用
21st International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) / 8th Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM) / International Workshop on Computational Diffusion MRI (CDMRI)
作者: Li, Hongming Fan, Yong Univ Penn Dept Radiol Perelman Sch Med Ctr Biomed Image Comp & Analyt Philadelphia PA 19104 USA
decoding brain functional states underlying different cognitive processes using multivariate pattern recognition techniques has attracted increasing interests in brain imaging studies. Promising performance has been a... 详细信息
来源: 评论
Cross recurrence quantifiers as new connectivity measures for structure learning of Bayesian networks in brain decoding
收藏 引用
CHAOS SOLITONS & FRACTALS 2019年 123卷 263-274页
作者: Yargholi, E. Hossein-Zadeh, G-A Univ Tehran Univ Coll Engn Sch Elect & Comp Engn POB 14395-515 Tehran Iran Inst Res Fundamental Sci IPM Sch Cognit Sci POB 19395-5746 Tehran Iran
Bayesian networks were efficiently applied for brain decoding along with connectivity information used in structure learning of Bayesian networks. The modified structure learning proposed expands the application of Ba... 详细信息
来源: 评论
A New Representation of fMRI Signal by a Set of Local Meshes for brain decoding
收藏 引用
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 2017年 第4期3卷 683-694页
作者: Onal, Itir Ozay, Mete Mizrak, Eda Oztekin, Ilke Vural, Fatos T. Yarman Middle East Tech Univ Dept Comp Engn TR-06800 Ankara Turkey Tohoku Univ Grad Sch Informat Sci Sendai Miyagi 9808577 Japan Koc Univ Dept Psychol TR-34450 Istanbul Turkey
How neurons influence each other's firing depends on the strength of synaptic connections among them. Motivated by the highly interconnected structure of the brain, in this study, we propose a computational model ... 详细信息
来源: 评论
A Novel brain decoding Method: A Correlation Network Framework for Revealing brain Connections
收藏 引用
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 2019年 第1期11卷 95-106页
作者: Yu, Siyu Zheng, Nanning Ma, Yongqiang Wu, Hao Chen, Badong Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Shaanxi Peoples R China
brain decoding is a hot spot in cognitive science, which focuses on reconstructing perceptual images from brain activities. Analyzing the correlations of collected data from human brain activities and representing act... 详细信息
来源: 评论
brain decoding via Graph Kernels
Brain Decoding via Graph Kernels
收藏 引用
3rd International Workshop on Pattern Recognition in NeuroImaging (PRNI)
作者: Vega-Pons, Sandro Avesani, Paolo Fdn Bruno Kessler NeuroInformat Lab NILab Trento Italy
An emergent trend in data analysis of functional brain recordings is based on multivariate pattern recognition. Unlike univariate approaches, it is designed as a prediction task by decoding the brain state. fMRI brain... 详细信息
来源: 评论
brain decoding for brain Mapping: Definition, Heuristic Quantification, and Improvement of Interpretability in Group MEG decoding
Brain Decoding for Brain Mapping: Definition, Heuristic Quan...
收藏 引用
作者: Seyed Mostafa Kia University of Trento
学位级别:博士
In the last century, a huge multi–disciplinary scientific endeavor is de- voted to answer the historical questions in understanding the brain func- tions. Among the statistical methods used for this purpose, brain de... 详细信息
来源: 评论