咨询与建议

限定检索结果

文献类型

  • 75 篇 期刊文献
  • 57 篇 会议
  • 6 篇 学位论文

馆藏范围

  • 138 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 94 篇 工学
    • 52 篇 计算机科学与技术...
    • 33 篇 电气工程
    • 25 篇 生物医学工程(可授...
    • 10 篇 信息与通信工程
    • 10 篇 控制科学与工程
    • 5 篇 软件工程
    • 4 篇 机械工程
    • 4 篇 生物工程
    • 3 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 1 篇 材料科学与工程(可...
    • 1 篇 网络空间安全
  • 78 篇 医学
    • 48 篇 基础医学(可授医学...
    • 33 篇 临床医学
    • 31 篇 医学技术(可授医学...
    • 21 篇 特种医学
    • 1 篇 公共卫生与预防医...
    • 1 篇 中西医结合
  • 41 篇 理学
    • 32 篇 生物学
    • 5 篇 物理学
    • 2 篇 数学
    • 1 篇 化学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 11 篇 农学
    • 4 篇 作物学
  • 4 篇 教育学
    • 4 篇 心理学(可授教育学...
  • 2 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 138 篇 brain decoding
  • 44 篇 fmri
  • 17 篇 deep learning
  • 13 篇 functional magne...
  • 12 篇 functional magne...
  • 12 篇 classification
  • 10 篇 decoding
  • 10 篇 machine learning
  • 8 篇 eeg
  • 7 篇 meg
  • 7 篇 feature extracti...
  • 6 篇 transfer learnin...
  • 6 篇 functional conne...
  • 6 篇 neuroimaging
  • 5 篇 brain modeling
  • 5 篇 magnetoencephalo...
  • 4 篇 generative model
  • 4 篇 signal processin...
  • 4 篇 multi-task learn...
  • 4 篇 computational mo...

机构

  • 7 篇 middle east tech...
  • 5 篇 bruno kessler fd...
  • 4 篇 northwestern pol...
  • 3 篇 univ trento dept...
  • 3 篇 nanyang technol ...
  • 3 篇 univ georgia bio...
  • 3 篇 xi an jiao tong ...
  • 2 篇 fdn bruno kessle...
  • 2 篇 imperial coll lo...
  • 2 篇 ecole polytech f...
  • 2 篇 univ georgia dep...
  • 2 篇 hokkaido univ fa...
  • 2 篇 nagaoka univ tec...
  • 2 篇 hokkaido univ fa...
  • 2 篇 univ trento cime...
  • 2 篇 hokkaido univ gr...
  • 2 篇 imperial coll lo...
  • 2 篇 koc univ dept ps...
  • 2 篇 tohoku univ grad...
  • 2 篇 kyoto univ grad ...

作者

  • 12 篇 vural fatos t. y...
  • 6 篇 ozay mete
  • 6 篇 kia seyed mostaf...
  • 6 篇 avesani paolo
  • 5 篇 onal itir
  • 5 篇 olivetti emanuel...
  • 5 篇 haseyama miki
  • 5 篇 ogawa takahiro
  • 4 篇 han junwei
  • 3 篇 harakawa ryosuke
  • 3 篇 van de ville dim...
  • 3 篇 rajapakse jagath...
  • 3 篇 gupta sukrit
  • 3 篇 richiardi jonas
  • 3 篇 hu xintao
  • 3 篇 vuilleumier patr...
  • 3 篇 zhao shijie
  • 3 篇 thirion bertrand
  • 3 篇 chen badong
  • 3 篇 sebe nicu

语言

  • 135 篇 英文
  • 2 篇 其他
  • 1 篇 土耳其文
检索条件"主题词=brain decoding"
138 条 记 录,以下是41-50 订阅
排序:
On the benefits of self-taught learning for brain decoding
收藏 引用
GIGASCIENCE 2023年 第12期12卷 giad029页
作者: Germani, Elodie Fromont, Elisa Maumet, Camille Univ Rennes Inria CNRS InsermIRISA UMR 6074Empenn ERL U 1228 F-35000 Rennes France Univ Rennes IUF CNRS IRISA UMR 6074Inria F-35000 Rennes France
Context: We study the benefits of using a large public neuroimaging database composed of functional magnetic resonance imaging (fMRI) statistic maps, in a self-taught learning framework, for improving brain decoding o... 详细信息
来源: 评论
Class imbalance should not throw you off balance: Choosing the right classifiers and performance metrics for brain decoding with imbalanced data
收藏 引用
NEUROIMAGE 2023年 第1期277卷 120253-120253页
作者: Tholke, Philipp Mantilla-Ramos, Yorguin-Jose Abdelhedi, Hamza Maschke, Charlotte Dehgan, Arthur Harel, Yann Kemtur, Anirudha Berrada, Loubna Mekki Sahraoui, Myriam Young, Tammy Pepin, Antoine Bellemare El Khantour, Clara Landry, Mathieu Pascarella, Annalisa Hadid, Vanessa Combrisson, Etienne O'Byrne, Jordan Jerbi, Karim Univ Montreal Cognit & Computat Neurosci Lab CoCo Lab 2900Boul Edouard Montpetit Montreal PQ H3T 1J4 Canada Osnabruck Univ Inst Cognit Sci Neuer Graben 29 Schloss D-49074 Osnabruck Lower Saxony Germany Univ Antioquia Fac Med Neuropsychol & Behav Grp GRUNECO 53-108 Medellin Medellin 050010 Colombia McGill Univ Integrated Program Neurosci 1033 Pine Ave Montreal PQ H3A0G4 Canada Univ Alberta Dept Comp Sci 116 St & 85 Ave Edmonton AB T6G 2R3 Canada Concordia Univ Dept Mus 1550 De Maisonneuve Blvd W Montreal PQ H3H 1G8 Canada Natl Res Council Italy Inst Appl Math Mauro Picone Rome Italy Aix Marseille Univ Inst Neurosci Timone INT CNRS F-13005 Marseille France Mila Quebec Inst 6666 Rue St Urbain Montreal PQ H2S 3H1 Canada Quebec Neuroai AI Res Ctr UNIQUE Ctr 3744 Rue Jean Brillant Montreal PQ H3T 1P1 Canada
Machine learning (ML) is increasingly used in cognitive, computational and clinical neuroscience. The reliable and efficient application of ML requires a sound understanding of its subtleties and limitations. Training... 详细信息
来源: 评论
Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks
收藏 引用
NEUROIMAGE 2019年 202卷 116059-000页
作者: Li, Hongming Fan, Yong Univ Penn Perelman Sch Med Dept Radiol Ctr Biomed Image Comp & Analyt Philadelphia PA 19104 USA
decoding brain functional states underlying cognitive processes from functional MRI (fMRI) data using multivariate pattern analysis (MVPA) techniques has achieved promising performance for characterizing brain activat... 详细信息
来源: 评论
Visual Representation Model for fMRI-based brain decoding
Visual Representation Model for fMRI-based Brain Decoding
收藏 引用
2019第二届电子,通讯与控制工程国际会议
作者: Piyawat Saengpetch Luepol Pipanmemekaporn Suwatchai Kamolsantiroj Department of Computer and Information Science King Mongkut's University of Technology North Bangkok
Classification of brain activity patterns has enabled to infer what a person in mind. Among brain activity signals, functional Magnetic Resonance Imaging(fMRI) is considered as the most reliable source to decode the n... 详细信息
来源: 评论
Ensembling brain Regions for brain decoding
Ensembling Brain Regions for Brain Decoding
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
作者: Sarper Alkan Fatos T. Yarman-Vural the Department of Cognitive Science Middle East Technical University Ankara Turkey and Department of Mechatronics Engineering Cankaya University Ankara Turkey Faculty of Computer Enginering Middle East Technical University Ankara Turkey
In this study, we propose a new method which ensembles the brain regions for brain decoding. The ensemble is generated by clustering the fMRI images recorded during an experimental set-up which measures the cognitive ... 详细信息
来源: 评论
A cross-modal adaptation approach for brain decoding
A cross-modal adaptation approach for brain decoding
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Pouya Ghaemmaghami Moin Nabi Yan Yan Giuseppe Riccardi Nicu Sebe Department of Information Engineering and Computer Science University of Trento Italy
brain decoding has become a hot topic in many recent brain studies. In a typical neuroimaging experiment, participants are presented with different categories of stimuli while their concurrent brain activity is record... 详细信息
来源: 评论
Correntropy-Based Logistic Regression With Automatic Relevance Determination for Robust Sparse brain Activity decoding
收藏 引用
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 2023年 第8期70卷 2416-2429页
作者: Li, Yuanhao Chen, Badong Shi, Yuxi Yoshimura, Natsue Koike, Yasuharu Tokyo Inst Technol Inst Innovat Res Yokohama 2268503 Japan Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot XIan Peoples R China Tokyo Inst Technol Inst Innovat Res Tokyo Japan
Objective: Recent studies have used sparse classifications to predict categorical variables from high-dimensional brain activity signals to expose human's mental states and intentions, selecting the relevant featu... 详细信息
来源: 评论
Deep Learning for brain Encoding and decoding  44
Deep Learning for Brain Encoding and Decoding
收藏 引用
44th Annual Meeting of the Cognitive Science Society: Cognitive Diversity, CogSci 2022
作者: Oota, Subba Reddy Arora, Jashn Gupta, Manish Bapi, Raju S. Toneva, Mariya Inria Bordeaux France IIIT Hyderabad India Microsoft Hyderabad India Princeton Neuroscience Institute United States LaBRI - Laboratoire Bordelais de Recherche en Informatique France IMN - Institut des Maladies Neurodégénératives Bordeaux France
来源: 评论
Editorial: Inter- and Intra-subject Variability in brain Imaging and decoding
收藏 引用
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE 2021年 15卷 791129页
作者: Wei, Chun-Shu Keller, Corey J. Li, Junhua Lin, Yuan-Pin Nakanishi, Masaki Wagner, Johanna Wu, Wei Zhang, Yu Jung, Tzyy-Ping Natl Yang Ming Chiao Tung Univ Dept Comp Sci Hsinchu Taiwan Natl Yang Ming Chiao Tung Univ Inst Educ Hsinchu Taiwan Natl Yang Ming Chiao Tung Univ Inst Elect & Control Engn Hsinchu Taiwan Stanford Univ Dept Psychiat & Behav Sci Stanford CA USA Univ Essex Sch Comp Sci & Elect Engn Colchester Essex England Natl Sun Yat Sen Univ Inst Med Sci & Technol Kaohsiung Taiwan Natl Sun Yat Sen Univ Dept Elect Engn Kaohsiung Taiwan Univ Calif San Diego Inst Neural Computat San Diego CA USA Lehigh Univ Dept Bioengn Bethlehem PA 18015 USA
[...]questions arise about how to observe, analyze, and model inter- and intra-subject variability, what researchers might gain or lose from this variability, and how to cope with the variability in brain imaging and ... 详细信息
来源: 评论
Perceived Image decoding From brain Activity Using Shared Information of Multi-Subject fMRI Data
收藏 引用
IEEE ACCESS 2021年 9卷 26593-26606页
作者: Akamatsu, Yusuke Harakawa, Ryosuke Ogawa, Takahiro Haseyama, Miki Hokkaido Univ Grad Sch Informat Sci & Technol Sapporo Hokkaido 0600814 Japan Nagaoka Univ Technol Dept Elect Elect & Informat Engn Nagaoka Niigata 9402188 Japan Hokkaido Univ Fac Informat Sci & Technol Sapporo Hokkaido 0600814 Japan
decoding a person's cognitive contents from evoked brain activity is becoming important in the field of brain-computer interaction. Previous studies have decoded a perceived image from functional magnetic resonanc... 详细信息
来源: 评论