咨询与建议

限定检索结果

文献类型

  • 21 篇 会议
  • 17 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 39 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 36 篇 工学
    • 31 篇 计算机科学与技术...
    • 7 篇 电气工程
    • 5 篇 软件工程
    • 4 篇 控制科学与工程
    • 2 篇 信息与通信工程
    • 1 篇 农业工程
    • 1 篇 环境科学与工程(可...
  • 4 篇 理学
    • 2 篇 数学
    • 2 篇 物理学
    • 1 篇 系统科学
  • 4 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 经济学
    • 1 篇 理论经济学

主题

  • 39 篇 clustering ensem...
  • 7 篇 clustering
  • 5 篇 cluster analysis
  • 4 篇 consensus cluste...
  • 3 篇 classification
  • 3 篇 evidence accumul...
  • 3 篇 clustering analy...
  • 2 篇 probability dens...
  • 2 篇 customer segment...
  • 2 篇 clustering algor...
  • 2 篇 probability dist...
  • 2 篇 data objects
  • 2 篇 projective clust...
  • 2 篇 dimensionality r...
  • 2 篇 binary matrix fa...
  • 2 篇 optimization
  • 2 篇 data mining
  • 2 篇 subspace cluster...
  • 2 篇 kernel density e...
  • 2 篇 dissimilarity me...

机构

  • 4 篇 inst super tecn ...
  • 3 篇 shanghai jiao to...
  • 3 篇 city univ hong k...
  • 2 篇 agt int darmstad...
  • 2 篇 agt internationa...
  • 2 篇 george mason uni...
  • 2 篇 brigham young un...
  • 2 篇 inst super engn ...
  • 2 篇 yahoo res barcel...
  • 2 篇 tech univ darmst...
  • 1 篇 fdn bruno kessle...
  • 1 篇 sichuan univ col...
  • 1 篇 univ calif river...
  • 1 篇 univ ca foscari ...
  • 1 篇 sci area network...
  • 1 篇 univ fed rio gra...
  • 1 篇 appdynam inc ca ...
  • 1 篇 dr mgr univ dept...
  • 1 篇 univ ca foscari ...
  • 1 篇 fujian normal un...

作者

  • 5 篇 fred ana
  • 4 篇 hong yi
  • 3 篇 domeniconi carlo...
  • 3 篇 kwong sam
  • 3 篇 lourenco andre
  • 2 篇 s. sukhanov
  • 2 篇 tagarelli andrea
  • 2 篇 figueiredo mario
  • 2 篇 pelillo marcello
  • 2 篇 a.m. zoubir
  • 2 篇 ren qingsheng
  • 2 篇 bulo samuel rota
  • 2 篇 chang yuchou
  • 2 篇 gullo francesco
  • 2 篇 rebagliati nicol...
  • 2 篇 c. debes
  • 2 篇 sukhanov s.
  • 2 篇 zoubir a. m.
  • 2 篇 aidos helena
  • 2 篇 debes c.

语言

  • 39 篇 英文
检索条件"主题词=clustering ensembles"
39 条 记 录,以下是1-10 订阅
排序:
clustering ensembles and space discretization - A new regard toward diversity and consensus
收藏 引用
PATTERN RECOGNITION LETTERS 2010年 第15期31卷 2415-2424页
作者: Montalvao, Jugurta Canuto, Janio Univ Fed Sergipe BR-49100000 Sao Cristovao Brazil Univ Estadual Campinas UNICAMP BR-13083852 Campinas SP Brazil
In recent years, the cluster ensembles have been successfully used to tackle well known drawbacks of individual clustering algorithms. Beyond the expected improvement provided by the averaging effect of many clusterin... 详细信息
来源: 评论
clustering ensembles Based on Probability Density Function Estimation  7
Clustering Ensembles Based on Probability Density Function E...
收藏 引用
7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud) / 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom)
作者: Wu, Yingyan He, Yulin Huang, Joshua Zhexue Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China
The traditional clustering algorithms rely excessively on the similarity of the geographic distance between objects, like DBSCAN, which is unlikely to handle uncertain objects that are geometrically indistinguishable.... 详细信息
来源: 评论
Steganalysis Over Large-Scale Social Networks With High-Order Joint Features and clustering ensembles
收藏 引用
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2016年 第2期11卷 344-357页
作者: Li, Fengyong Wu, Kui Lei, Jingsheng Wen, Mi Bi, Zhongqin Gu, Chunhua Shanghai Univ Elect Power Coll Comp Sci & Technol Shanghai 200090 Peoples R China Univ Victoria Dept Comp Sci Victoria BC V8W 3P6 Canada
This paper tackles a recent challenge in identifying culprit actors, who try to hide confidential payload with steganography, among many innocent actors in social media networks. The problem is called steganographer d... 详细信息
来源: 评论
Hybrid sampling on mutual information entropy-based clustering ensembles for optimizations
收藏 引用
NEUROCOMPUTING 2010年 第7-9期73卷 1457-1464页
作者: Wang, Feng Yang, Cheng Lin, Zhiyi Li, Yuanxiang Yuan, Yuan Wuhan Univ State Key Lab Software Engn Wuhan 430072 Peoples R China Guangdong Univ Technol Fac Comp Guangzhou Guangdong Peoples R China Aston Univ Sch Engn & Appl Sci Birmingham B4 7ET W Midlands England
In this paper, we focus on the design of bivariate EDAs for discrete optimization problems and propose a new approach named HSMIEC. While the current EDAs require much time in the statistical learning process as the r... 详细信息
来源: 评论
Multi-objective design of hierarchical consensus functions for clustering ensembles via genetic programming
收藏 引用
DECISION SUPPORT SYSTEMS 2011年 第4期51卷 794-809页
作者: Coelho, Andre L. V. Fernandes, Everlandio Faceli, Katti Univ Fortaleza Ctr Technol Sci Grad Program Appl Informat BR-60811905 Fortaleza CE Brazil Univ Fed Sao Carlos BR-18052780 Sorocaba SP Brazil
This paper investigates a genetic programming (GP) approach aimed at the multi-objective design of hierarchical consensus functions for clustering ensembles. By this means, data partitions obtained via different clust... 详细信息
来源: 评论
Projective clustering ensembles
收藏 引用
DATA MINING AND KNOWLEDGE DISCOVERY 2013年 第3期26卷 452-511页
作者: Gullo, Francesco Domeniconi, Carlotta Tagarelli, Andrea Yahoo Res Barcelona 08018 Spain Univ Calabria DEIS Dept I-87036 Arcavacata Di Rende CS Italy George Mason Univ Dept Comp Sci Fairfax VA 22030 USA
A considerable amount of work has been done in data clustering research during the last four decades, and a myriad of methods has been proposed focusing on different data types, proximity functions, cluster representa... 详细信息
来源: 评论
Metacluster-based Projective clustering ensembles
收藏 引用
MACHINE LEARNING 2015年 第1-2期98卷 181-216页
作者: Gullo, Francesco Domeniconi, Carlotta Tagarelli, Andrea Yahoo Res Barcelona 08018 Spain George Mason Univ Dept Comp Sci Fairfax VA 22030 USA Univ Calabria DIMES Dept I-87036 Arcavacata Di Rende CS Italy
The Projective clustering Ensemble (PCE) problem is a recent clustering advance aimed at combining the two powerful tools of clustering ensembles and projective clustering. PCE has been formalized as either a two-obje... 详细信息
来源: 评论
Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm
收藏 引用
PATTERN RECOGNITION 2008年 第9期41卷 2742-2756页
作者: Hong, Yi Kwong, Sam Chang, Yuchou Ren, Qingsheng City Univ Hong Kong Dept Comp Sci Kowloon Hong Kong Peoples R China Brigham Young Univ Dept Elect & Comp Engn Provo UT 84602 USA Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai 200030 Peoples R China
This paper describes a novel feature selection algorithm for unsupervised clustering, that combines the clustering ensembles method and the population based incremental learning algorithm. The main idea of the propose... 详细信息
来源: 评论
Resampling-based selective clustering ensembles
收藏 引用
PATTERN RECOGNITION LETTERS 2009年 第3期30卷 298-305页
作者: Hong, Yi Kwong, Sam Wang, Hanli Ren, Qjngsheng City Univ Hong Kong Dept Comp Sci Kowloon Hong Kong Peoples R China Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai Peoples R China
Traditional clustering ensembles methods combine all obtained clustering results at hand. However, we observe that it can often achieve a better clustering solution if only part of all available clustering results are... 详细信息
来源: 评论
FedCE: Personalized Federated Learning Method based on clustering ensembles  23
FedCE: Personalized Federated Learning Method based on Clust...
收藏 引用
31st ACM International Conference on Multimedia (MM)
作者: Cai, Luxin Chen, Naiyue Cao, Yuanzhouhan He, Jiahuan Li, Yidong Beijing Jiaotong Univ Sch Comp & Informat Technol Minist Educ Key Lab Big Data & Artificial Intelligence Transp Beijing Peoples R China Beijing Jiaotong Univ Sch Comp & Informat Technol Beijing Peoples R China
Federated learning (FL) is a privacy-aware computing framework that enables multiple clients to collaborate in solving machine learning problems. In real scenarios, non-IID data held by different edge devices will deg... 详细信息
来源: 评论