咨询与建议

限定检索结果

文献类型

  • 22 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 26 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 24 篇 工学
    • 12 篇 电气工程
    • 12 篇 计算机科学与技术...
    • 5 篇 控制科学与工程
    • 4 篇 化学工程与技术
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 信息与通信工程
    • 1 篇 土木工程
    • 1 篇 环境科学与工程(可...
  • 3 篇 理学
    • 2 篇 数学
    • 1 篇 生物学
    • 1 篇 系统科学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 26 篇 clustering struc...
  • 4 篇 fluidization
  • 3 篇 multi-view clust...
  • 2 篇 task analysis
  • 2 篇 dimensionality r...
  • 2 篇 optimization
  • 2 篇 wireless sensor ...
  • 2 篇 laplace equation...
  • 2 篇 graph sampling
  • 2 篇 low-rank constra...
  • 2 篇 clustering algor...
  • 1 篇 qam
  • 1 篇 routing protocol
  • 1 篇 topological rela...
  • 1 篇 laplacian matrix
  • 1 篇 constellation si...
  • 1 篇 in-memory comput...
  • 1 篇 adaptive loss
  • 1 篇 ni-flexrio-7975 ...
  • 1 篇 labview

机构

  • 3 篇 univ chinese aca...
  • 2 篇 chinese acad sci...
  • 1 篇 center for appli...
  • 1 篇 univ north carol...
  • 1 篇 xidian univ sch ...
  • 1 篇 chinese acad sci...
  • 1 篇 hong kong polyte...
  • 1 篇 key lab mobile n...
  • 1 篇 natl digital swi...
  • 1 篇 rochester inst t...
  • 1 篇 southern univ sc...
  • 1 篇 national digital...
  • 1 篇 chinese acad sci...
  • 1 篇 chongqing univ d...
  • 1 篇 qilu univ techno...
  • 1 篇 school of comput...
  • 1 篇 univ north carol...
  • 1 篇 qilu univ techno...
  • 1 篇 northwestern pol...
  • 1 篇 jiangnan univ sc...

作者

  • 4 篇 wang junwu
  • 2 篇 qin zhiyuan
  • 1 篇 ping ke
  • 1 篇 wu chuhan
  • 1 篇 chen baihua
  • 1 篇 xie xijiong
  • 1 篇 li peiwang
  • 1 篇 cai bing
  • 1 篇 hu lianyu
  • 1 篇 duan yong-gang
  • 1 篇 he zengyou
  • 1 篇 shuangge ma
  • 1 篇 nie feiping
  • 1 篇 shi weiren
  • 1 篇 jajoo gaurav
  • 1 篇 liu zhenhai
  • 1 篇 li shuxiao
  • 1 篇 fan yuling
  • 1 篇 li hongtao
  • 1 篇 dong xia

语言

  • 23 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=clustering structure"
26 条 记 录,以下是1-10 订阅
排序:
clustering structure-Induced Robust Multi-View Graph Recovery
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2020年 第10期30卷 3584-3597页
作者: Wong, Wai Keung Han, Na Fang, Xiaozhao Zhan, Shanhua Wen, Jie Hong Kong Polytech Univ Inst Text & Clothing Hong Kong Peoples R China Hong Kong Polytech Univ Shenzhen Res Inst Hong Kong 518055 Peoples R China Guangdong Univ Technol Sch Comp Sci Guangzhou 510006 Guangdong Peoples R China Guangdong Univ Technol Sch Automat Guangzhou 510006 Guangdong Peoples R China Harbin Inst Technol Shenzhen Grad Sch Biocomp Res Ctr Shenzhen 518055 Guangdong Peoples R China
Graph based classification methods have been widely applied in the fields of computer vision and machine learning. The quality of the graph highly affects the performance of these methods. The same object is commonly ... 详细信息
来源: 评论
Joint Learning of Spectral clustering structure and Fuzzy Similarity Matrix of Data
收藏 引用
IEEE TRANSACTIONS ON FUZZY SYSTEMS 2019年 第1期27卷 31-44页
作者: Bian, Zekang Ishibuchi, Hisao Wang, Shitong Jiangnan Univ Sch Digital Media Wuxi 214122 Peoples R China Jiangnan Univ Jiangsu Prov Key Lab Media Design & Software Tech Wuxi 214122 Peoples R China Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen 518055 Peoples R China Osaka Prefecture Univ Dept Comp Sci & Intelligent Sys Osaka 5998531 Japan
When spectral clustering analysis is applied, a similarity matrix of data plays a vital role in both clustering performance and stability of clustering results. In order to enhance the clustering performance and maint... 详细信息
来源: 评论
Consistent and diverse multi-View subspace clustering with structure constraint
收藏 引用
PATTERN RECOGNITION 2022年 121卷 108196-108196页
作者: Si, Xiaomeng Yin, Qiyue Zhao, Xiaojie Yao, Li Beijing Normal Univ Sch Artificial Intelligence Beijing Peoples R China Chinese Acad Sci Inst Automat Beijing Peoples R China
Multi-view subspace clustering algorithms have recently been developed to process multi-view dataset clustering by accurately depicting the essential characteristics of multi-view data. Most existing methods focus on ... 详细信息
来源: 评论
Clusterability test for categorical data
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2025年 第5期67卷 4113-4138页
作者: Hu, Lianyu Dong, Junjie Jiang, Mudi Liu, Yan He, Zengyou Dalian Univ Technol Sch Software Dalian 116620 Peoples R China Dalian Univ Sch Software Engn Dalian 116622 Peoples R China Key Lab Ubiquitous Network & Serv Software Liaonin Dalian 116620 Peoples R China
The objective of clusterability evaluation is to check whether a clustering structure exists within the data set. As a crucial yet often-overlooked issue in cluster analysis, it is essential to conduct such a test bef... 详细信息
来源: 评论
Graph-Regularized Consensus Learning and Diversity Representation for unsupervised multi-view feature selection
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2025年 311卷
作者: Xu, Shengke Xie, Xijiong Cao, Zhiwen Ningbo Univ Sch Informat Sci & Engn Ningbo 315211 Peoples R China Key Lab Mobile Network Applicat Technol Zhejiang P Ningbo 315211 Peoples R China
In the existing data dimensionality reduction methods, unsupervised multi-view feature selection has been widely adopted for its effectiveness. However, most of the current methods lack sufficient integration of conse... 详细信息
来源: 评论
Robust feature enhanced deep kernel support vector machine via low rank representation and clustering
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 271卷
作者: Li, Hongtao Jiang, Lulu Ganaa, Ernest Domanaanmwi Li, Peiwang Shen, Xiang-Jun Nanjing Univ Sci & Technol Sch Elect & Opt Engn Nanjing 210094 Peoples R China Jiangsu Univ Sch Comp Sci & Commun Engn Zhenjiang Peoples R China Hilla Limann Tech Univ Wa Ghana Jiangsu Yangjing Petrochem Grp Co Ltd Yangjing Peoples R China Nanjing Univ Posts & Telecommun Nanjing 222000 Jiangsu Peoples R China
Traditional support vector machines (SVM) obtain classifiers by maximizing margins of data samples in original data features, which leads to poor robustness and weak generalization ability in noisy scenarios. We addre... 详细信息
来源: 评论
Cluster-preserving sampling algorithm for large-scale graphs
收藏 引用
Science China(Information Sciences) 2023年 第1期66卷 60-76页
作者: Jianpeng ZHANG Hongchang CHEN Dingjiu YU Yulong PEI Yingjun DENG National Digital Switching System E&T Research Center Information Engineering University Network Systems Department of the Strategic Support Force School of Computer Science and Technology Eindhoven University of Technology Center for Applied Mathematics Tianjin University
Graph sampling is a very effective method to deal with scalability issues when analyzing largescale graphs. Lots of sampling algorithms have been proposed, and sampling qualities have been quantified using explicit pr... 详细信息
来源: 评论
Cluster-preserving sampling from fully-dynamic streaming graphs
收藏 引用
INFORMATION SCIENCES 2019年 482卷 279-300页
作者: Zhang, Jianpeng Zhu, Kaijie Pei, Yulong Fletcher, George Pechenizkiy, Mykola Eindhoven Univ Technol NL-5600 MB Eindhoven Netherlands Natl Digital Switching Syst Engn & Technol R&D Ct Zhengzhou 450002 Henan Peoples R China
Current sampling techniques on graphs (i.e., network-structured data) mainly study static graphs and suppose that the whole graph is available at all times. However, a surge of graphs are becoming too large-scale and/... 详细信息
来源: 评论
Unsupervised and Semisupervised Projection With Graph Optimization
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021年 第4期32卷 1547-1559页
作者: Nie, Feiping Dong, Xia Li, Xuelong Northwestern Polytech Univ Sch Comp Sci Xian 710072 Peoples R China Northwestern Polytech Univ Ctr Opt IMagery Anal & Learning OPTIMAL Xian 710072 Peoples R China
Graph-based technique is widely used in projection, clustering, and classification tasks. In this article, we propose a novel and solid framework, named unsupervised projection with graph optimization (UPGO), for both... 详细信息
来源: 评论
Soft adaptive loss based Laplacian eigenmaps
收藏 引用
APPLIED INTELLIGENCE 2022年 第1期52卷 321-338页
作者: Chen, Baihua Gao, Yunlong Wu, Shunxiang Pan, Jinyan Liu, Jinghua Fan, Yuling Xiamen Univ Dept Automat Xiamen 361102 Peoples R China Jimei Univ Sch Informat Engn Xiamen 361021 Peoples R China
The Laplacian eigenmaps (LE) is one of the most commonly used nonlinear dimensionality reduction methods and aims to find a low-dimensional representation to preserve the topological relationship between sample points... 详细信息
来源: 评论