咨询与建议

限定检索结果

文献类型

  • 19 篇 期刊文献
  • 9 篇 会议
  • 6 篇 学位论文

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 26 篇 工学
    • 25 篇 计算机科学与技术...
    • 7 篇 电气工程
    • 3 篇 控制科学与工程
    • 2 篇 软件工程
    • 1 篇 动力工程及工程热...
    • 1 篇 信息与通信工程
  • 3 篇 理学
    • 2 篇 数学
    • 1 篇 生物学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 农学

主题

  • 34 篇 coevolutionary a...
  • 5 篇 cartesian geneti...
  • 4 篇 text
  • 3 篇 koevoluční algor...
  • 3 篇 evolutionary alg...
  • 3 篇 cooperative coev...
  • 3 篇 kartézské geneti...
  • 2 篇 genetic programm...
  • 2 篇 time series fore...
  • 2 篇 neural networks
  • 2 篇 evoluční algorit...
  • 2 篇 computer-aided l...
  • 2 篇 fitness predicti...
  • 2 篇 evolutionary des...
  • 2 篇 symbolic regress...
  • 2 篇 solution concept...
  • 2 篇 predikce fitness...
  • 2 篇 significant lags
  • 1 篇 fuzzy logic
  • 1 篇 cyber security

机构

  • 5 篇 brno university ...
  • 2 篇 gen elect global...
  • 2 篇 dept comp archit...
  • 2 篇 ben gurion univ ...
  • 2 篇 rensselaer polyt...
  • 2 篇 119 amory st cam...
  • 2 篇 the citadel 171 ...
  • 2 篇 univ s florida 4...
  • 2 篇 ramapo coll 505 ...
  • 2 篇 univ cent florid...
  • 1 篇 poznan univ tech...
  • 1 篇 eastern mediterr...
  • 1 篇 wuhan univ sch c...
  • 1 篇 univ minho inst ...
  • 1 篇 city univ hong k...
  • 1 篇 delft univ techn...
  • 1 篇 institute of com...
  • 1 篇 polish-japanese ...
  • 1 篇 toulouse inp lgp...
  • 1 篇 deep sea explora...

作者

  • 3 篇 wiegand r. paul
  • 3 篇 bucci anthony
  • 2 篇 kumar amruth n.
  • 2 篇 bari a. t. m. go...
  • 2 篇 del jesus m. j.
  • 2 篇 o'reilly una-may
  • 2 篇 sipper m
  • 2 篇 albert jennifer ...
  • 2 篇 subbu r
  • 2 篇 parras-gutierrez...
  • 2 篇 sanderson ac
  • 2 篇 rivas v. m.
  • 2 篇 zaritsky a
  • 2 篇 garcia-arenas m.
  • 2 篇 hemberg erik
  • 2 篇 krawiec krzyszto...
  • 2 篇 gaspar alessio
  • 1 篇 chaczko zenon
  • 1 篇 wiglasz michal
  • 1 篇 jakobovic domago...

语言

  • 32 篇 英文
  • 2 篇 其他
检索条件"主题词=coevolutionary algorithms"
34 条 记 录,以下是1-10 订阅
排序:
Modeling and convergence analysis of distributed coevolutionary algorithms
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS 2004年 第2期34卷 806-822页
作者: Subbu, R Sanderson, AC Gen Elect Global Res Niskayuna NY 12309 USA Rensselaer Polytech Inst Troy NY 12180 USA
A theoretical foundation is presented for modeling and convergence analysis of a class of distributed coevolutionary algorithms applied to optimization problems in which the variables are partitioned among p nodes. An... 详细信息
来源: 评论
Nonlinear black-box system identification through coevolutionary algorithms and radial basis function artificial neural networks
收藏 引用
APPLIED SOFT COMPUTING 2020年 87卷 105990-000页
作者: Hultmann Ayala, Helon Vicente Habineza, Didace Rakotondrabe, Micky Coelho, Leandro dos Santos Pontifical Catholic Univ Rio de Janeiro PUC Rio Dept Mech Engn Rua Marques de Sao Vicente 225 BR-22453900 Rio De Janeiro RJ Brazil Punch Powertrain Nv Ondernemerslaan 5429 B-3800 St Truiden Belgium Toulouse INP LGP Natl Sch Engn Tarbes ENIT 47 Ave Azreix F-65000 Tarbes France Pontifical Catholic Univ Parana PUCPR Ind & Syst Engn Grad Program Rua Imaculada Conceicao 1155 BR-80215910 Curitiba Parana Brazil Fed Univ Parana UFPR Dept Elect Engn Rua Cel Francisco Heraclito dos Santos 100 BR-81531980 Curitiba Parana Brazil
The present work deals with the application of coevolutionary algorithms and artificial neural networks to perform input selection and related parameter estimation for nonlinear black-box models in system identificati... 详细信息
来源: 评论
coevolutionary Memetic algorithms for Solving Traveling Salesman Problem (TSP)
Coevolutionary Memetic Algorithms for Solving Traveling Sale...
收藏 引用
作者: Serife Ulucinar Eastern Mediterranean University
学位级别:硕士
In this thesis, coevolutionary Memetic algorithms are used for solving the well- known Traveling Salesman Problem (TSP). Traveling Salesman Problem is NP- Complete which means no algorithm can solve this problem in a ... 详细信息
来源: 评论
Multiple Populations for Multiple Objectives: A coevolutionary Technique for Solving Multiobjective Optimization Problems
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2013年 第2期43卷 445-463页
作者: Zhan, Zhi-Hui Li, Jingjing Cao, Jiannong Zhang, Jun Chung, Henry Shu-Hung Shi, Yu-Hui Sun Yat Sen Univ Guangzhou 510275 Guangdong Peoples R China Minist Educ Key Lab Digital Life Beijing Peoples R China Educ Dept Guangdong Prov Key Lab Software Technol Guangzhou Guangdong Peoples R China Hong Kong Polytech Univ Kowloon Hong Kong Peoples R China Hong Kong Polytech Univ Dept Comp Kowloon Hong Kong Peoples R China City Univ Hong Kong Dept Elect Engn Kowloon Hong Kong Peoples R China Xian Jiaotong Liverpool Univ Dept Elect & Elect Engn Suzhou 215123 Peoples R China
Traditional multiobjective evolutionary algorithms (MOEAs) consider multiple objectives as a whole when solving multiobjective optimization problems (MOPs). However, this consideration may cause difficulty to assign f... 详细信息
来源: 评论
A coevolutionary algorithm assisted by two archives for constrained multi-objective optimization problems
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2023年 82卷
作者: Zeng, Yong Cheng, Yuansheng Liu, Jun Huazhong Univ Sci & Technol Sch Naval Architecture & Ocean Engn Wuhan 430074 Peoples R China Deep Sea Explorat CISSE Innovat Ctr Adv Ship Shanghai 200240 Peoples R China
coevolutionary algorithms have demonstrated high performance on many constrained multi-objective prob-lems. However, on some problems with fraudulent constraints or small feasible regions, they may fail to converge to... 详细信息
来源: 评论
Network-based distributed planning using coevolutionary agents: Architecture and evaluation
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS 2004年 第2期34卷 257-269页
作者: Subbu, R Sanderson, AC Gen Elect Global Res Niskayuna NY 12309 USA Rensselaer Polytech Inst Troy NY 12180 USA
A novel evolutionary planning framework (coevolutionary virtual design environment) particularly suited to distributed network-enabled design and manufacturing organizations is presented. The approach utilizes distrib... 详细信息
来源: 评论
Adaptive Fitness Predictors in coevolutionary Cartesian Genetic Programming
收藏 引用
EVOLUTIONARY COMPUTATION 2019年 第3期27卷 497-523页
作者: Drahosova, Michaela Sekanina, Lukas Wiglasz, Michal Brno Univ Technol Fac Informat Technol IT4Innovat Ctr Excellence Bozetechova 2 Brno 61266 Czech Republic
In genetic programming (GP), computer programs are often coevolved with training data subsets that are known as fitness predictors. In order to maximize performance of GP, it is important to find the most suitable par... 详细信息
来源: 评论
Competitive coevolutionary Learning of Fuzzy Systems for Job Exchange in Computational Grids
收藏 引用
EVOLUTIONARY COMPUTATION 2009年 第4期17卷 545-560页
作者: Foelling, Alexander Grimme, Christian Lepping, Joachim Papaspyrou, Alexander Schwiegelshohn, Uwe Tech Univ Dortmund Sect Informat Technol Robot Res Inst D-44227 Dortmund Germany
In our work, we address the problem of workload distribution within a computational grid. In this scenario, users submit jobs to local high performance computing (HPC) systems which are, in turn, interconnected such t... 详细信息
来源: 评论
coevolutionary-based mechanisms for network anomaly detection
收藏 引用
Journal of Mathematical Modelling and algorithms 2007年 第3期6卷 411-431页
作者: Ostaszewski, Marek Seredynski, Franciszek Bouvry, Pascal Faculty of Sciences Technology and Communication University of Luxembourg Luxembourg-Kirchberg 1359 6 rue Coudenhove Kalergi Luxembourg Polish-Japanese Institute of Information Technology Warsaw 02-008 Koszykowa 86 Poland Institute of Computer Science Polish Academy of Sciences Warsaw 01-237 Ordona 21 Poland
The paper presents an approach based on the principles of immune systems applied to the anomaly detection problem. Flexibility and efficiency of the anomaly detection system are achieved by building a model of the net... 详细信息
来源: 评论
coevolutionary Deep Reinforcement Learning
Coevolutionary Deep Reinforcement Learning
收藏 引用
IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
作者: Cotton, David Traish, Jason Chaczko, Zenon Univ Technol Sydney Fac Engn & Informat Technol Sydney NSW Australia
The ability to learn without instruction is a powerful enabler for learning systems. A mechanism for this, self-play, allows reinforcement learning to develop high performing policies without large datasets or expert ... 详细信息
来源: 评论