咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

主题

  • 1 篇 training through...
  • 1 篇 compiler-executo...
  • 1 篇 distributed data
  • 1 篇 privacy-preservi...
  • 1 篇 secure computati...

机构

  • 1 篇 university of il...
  • 1 篇 hong kong univer...

作者

  • 1 篇 fan lai
  • 1 篇 di chai
  • 1 篇 junxue zhang
  • 1 篇 kaiqiang xu
  • 1 篇 kai chen

语言

  • 1 篇 英文
检索条件"主题词=compiler-executor architecture"
1 条 记 录,以下是1-10 订阅
排序:
Sequoia: An Accessible and Extensible Framework for Privacy-Preserving Machine Learning over Distributed Data
收藏 引用
Proceedings of the ACM on Management of Data 2025年 第1期3卷 1-27页
作者: Kaiqiang Xu Di Chai Junxue Zhang Fan Lai Kai Chen Hong Kong University of Science and Technology Hong Kong Hong Kong University of Illinois Urbana-Champaign Urbana-Champaign IL USA
Privacy-preserving machine learning (PPML) algorithms use secure computation protocols to allow multiple data parties to collaboratively train machine learning (ML) models while maintaining their data confidentiality.... 详细信息
来源: 评论