Spin-orbit torque magnetic random-access memory (SOT-MRAM), which exhibits sub-nanosecond write speed and high endurance, is a promising candidate for the future high-level cache. Nevertheless, SOT-MRAM faces challeng...
详细信息
Spin-orbit torque magnetic random-access memory (SOT-MRAM), which exhibits sub-nanosecond write speed and high endurance, is a promising candidate for the future high-level cache. Nevertheless, SOT-MRAM faces challenge in meeting the high read performance requirements of cache applications due to the limited ON/OFF ratio. Consequently, extensive investigation has been conducted into robust complementary bit-cell (CBC) designs based on SOT-MRAM. However, previous designs suffer from significant technology feasibility, area and performance issues. In this paper, the feasibility and performance of the existing complementary write schemes are analyzed, and optimized U-type and toggle spin torque (TST) schemes with practicality and conciseness are presented. The previous CBC designs are evaluated and optimized in terms of circuit and layout, while the 1-word-line-3-bit-line (1WL3BL) CBC designs with both U-type and TST schemes are proposed, which can reduce the bit-cell area by 24.64%-27.54% and improve the write and read performance. In comparison to the conventional CBC design, the proposed 1WL3BL CBC design can reduce the write energy and read latency by up to 36.91% and 21.93%, respectively. Furthermore, the proposed low-voltage read scheme demonstrates the capability to enhance the read performance and conserve the read energy under the aggressive read-related process parameters.
暂无评论