In this paper, we propose a generic framework for 3D surface remeshing. Based on a metric-driven Discrete Voronoi Diagram construction, our output is an optimized 3D triangular mesh with a user-defined vertex budget. ...
详细信息
In this paper, we propose a generic framework for 3D surface remeshing. Based on a metric-driven Discrete Voronoi Diagram construction, our output is an optimized 3D triangular mesh with a user-defined vertex budget. Our approach can deal with a wide range of applications, from high-quality mesh generation to shape approximation. By using appropriate metric constraints, the method generates isotropic or anisotropic elements. Based on point sampling, our algorithm combines the robustness and theoretical strength of Delaunay criteria with the efficiency of an entirely discrete geometry processing. Besides the general described framework, we show the experimental results using isotropic, quadric-enhanced isotropic, and anisotropic metrics, which prove the efficiency of our method on large meshes at a low computational cost.
Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due...
详细信息
Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.
Handling the evolving permanent contact of deformable objects leads to a collision detection problem of high computing cost. Situations in which this type of contact happens are becoming more and more present with the...
详细信息
Handling the evolving permanent contact of deformable objects leads to a collision detection problem of high computing cost. Situations in which this type of contact happens are becoming more and more present with the increasing complexity of virtual human models, especially for the emerging medical applications. In this context, we propose a novel collision detection approach to deal with situations in which soft structures are in constant but dynamic contact, which is typical of 3D biological elements. Our method proceeds in two stages: First, in a preprocessing stage, a mesh is chosen under certain conditions as a reference mesh and is spherically sampled. In the collision detection stage, the resulting table is exploited for each vertex of the other mesh to obtain, in constant time, its signed distance to the fixed mesh. The two working hypotheses for this approach to succeed are typical of the deforming anatomical systems we target: First, the two meshes retain a layered configuration with respect to a central point and, second, the fixed mesh tangential deformation is bounded by the spherical sampling resolution. Within this context, the proposed approach can handle large relative displacements, reorientations, and deformations of the mobile mesh. We illustrate our method in comparison with other techniques on a biomechanical model of the human hip joint.
This paper presents an automated approach to learning object models by means of useful object data extracted from data-intensive semistructured web documents such as product descriptions. modeling intensive data on th...
详细信息
This paper presents an automated approach to learning object models by means of useful object data extracted from data-intensive semistructured web documents such as product descriptions. modeling intensive data on the Web involves the following three phrases: First, we identify the object region covering the descriptions of object data when irrelevant contents from the web documents are excluded. Second, we partition the contents of different object data appearing in the object region and construct object data using hierarchical XML outputs. Third, we induce the abstract object model from the analogous object data. This model will match the corresponding object data from a Web site more precisely and comprehensively than the existing handcrafted ontologies. The main contribution of this study is in developing a fully automated approach to extract object data and object model from semistructured web documents using kernel-based matching and View Syntax interpretation. Our system, OnModer, can automatically construct object data and induce object models from complicated web documents, such as the technical descriptions of personal computers and digital cameras downloaded from manufacturers' and vendors' sites. A comparison with the available hand-crafted ontologies and tests on an open corpus demonstrate that our framework is effective in extracting meaningful and comprehensive models.
The construction of a smooth surface interpolating a mesh of arbitrary topological type is an important problem in many graphics applications. This paper presents a two-phase process, based on a topological modificati...
详细信息
The construction of a smooth surface interpolating a mesh of arbitrary topological type is an important problem in many graphics applications. This paper presents a two-phase process, based on a topological modification of the control mesh and a subsequent Catmull-Clark subdivision, to construct a smooth surface that interpolates some or all of the vertices of a mesh with arbitrary topology. It is also possible to constrain the surface to have specified tangent planes at an arbitrary subset of the vertices to be interpolated. The method has the following features: 1) It is guaranteed to always work and the computation is numerically stable, 2) there is no need to solve a system of linear equations and the whole computation complexity is O(K) where K is the number of the vertices, and 3) each vertex can be associated with a scalar shape handle for local shape control. These features make interpolation using Catmull-Clark surfaces simple and, thus, make the new method itself suitable for interactive free- form shape design.
In this paper, we present a multigrid framework for constructing implicit, yet interactive solvers for the governing equations of motion of deformable volumetric bodies. We have integrated linearized, corotational lin...
详细信息
In this paper, we present a multigrid framework for constructing implicit, yet interactive solvers for the governing equations of motion of deformable volumetric bodies. We have integrated linearized, corotational linearized and non-linear Green strain into this framework. Based on a 3D finite element hierarchy, this approach enables realistic simulation of objects exhibiting an elastic modulus with a dynamic range of several orders of magnitude. Using the linearized strain measure, we can simulate 50 thousand tetrahedral elements with 20 fps on a single processor CPU. By using corotational linearized and non-linear Green strain, we can still simulate five thousand and two thousand elements, respectively, at the same rates. (c) 2006 Elsevier Ltd. All rights reserved.
Various acquisition, analysis, visualization, and compression approaches sample surfaces of 3D shapes in a uniform fashion without any attempt to align the samples with sharp edges or to adapt the sampling density to ...
详细信息
Various acquisition, analysis, visualization, and compression approaches sample surfaces of 3D shapes in a uniform fashion without any attempt to align the samples with sharp edges or to adapt the sampling density to the surface curvature. Consequently, triangle meshes that interpolate these samples usually chamfer sharp features and exhibit a relatively large error in their vicinity. We present two new filters that improve the quality of these resampled models. EdgeSharpener restores the sharp edges by splitting the chamfer edges and forcing the new vertices to lie on intersections of planes extending the smooth surfaces incident upon these chamfers. Bender refines the resulting triangle mesh using an interpolating subdivision scheme that preserves the sharpness of the recovered sharp edges while bending their polyline approximations into smooth curves. A combined Sharpen&Bend postprocessing significantly reduces the error produced by feature-insensitive sampling processes. For example, we have observed that the mean-squared distortion introduced by the SwingWrapper remeshing-based compressor can often be reduced by 80 percent executing EdgeSharpener alone after decompression. For models with curved regions, this error may be further reduced by an additional 60 percent if we follow the EdgeSharpening phase by Bender.
We present a new and efficient algorithm to accurately polygonize an implicit surface generated by multiple Boolean operations with globally deformed primitives. Our algorithm is special in the sense that it can be ap...
详细信息
We present a new and efficient algorithm to accurately polygonize an implicit surface generated by multiple Boolean operations with globally deformed primitives. Our algorithm is special in the sense that it can be applied to objects with both an implicit and a parametric representation, such as superquadrics, supershapes, and Dupin cyclides. The input is a Constructive Solid geometry tree (CSG tree) that contains the Boolean operations, the parameters of the primitives, and the global deformations. At each node of the CSG tree, the implicit formulations of the subtrees are used to quickly determine the parts to be transmitted to the parent node, while the primitives' parametric definition are used to refine an intermediary mesh around the intersection curves. The output is both an implicit equation and a mesh representing its solution. For the resulting object, an implicit equation with guaranteed differential properties is obtained by simple combinations of the primitives' implicit equations using R-functions. Depending on the chosen R-function, this equation is continuous and can be differentiable everywhere. The primitives' parametric representations are used to directly polygonize the resulting surface by generating vertices that belong exactly to the zero-set of the resulting implicit equation. The proposed approach has many potential applications, ranging from mechanical engineering to shape recognition and data compression. Examples of complex objects are presented and commented on to show the potential of our approach for shape modeling.
All orientable metric surfaces are Riemann surfaces and admit global conformal parameterizations. Riemann surface structure is a fundamental structure and governs many natural physical phenomena, such as heat diffusio...
详细信息
ISBN:
(纸本)0780387880
All orientable metric surfaces are Riemann surfaces and admit global conformal parameterizations. Riemann surface structure is a fundamental structure and governs many natural physical phenomena, such as heat diffusion and electro-magnetic fields on the surface. A good parameterization is crucial for simulation and visualization. This paper provides an explicit method for finding optimal global conformal parameterizations of arbitrary surfaces. It relies on certain holomorphic differential forms and conformal mappings from differential geometry and Riemann surface theories. Algorithms are developed to modify topology, locate zero points, and determine cohomology type;of differential forms. The implementation is based on a finite dimensional optimization method. The optimal parameterization is intrinsic to the geometry, preserves angular structure, and can play an important role in various applications including texture mapping, remeshing, morphing and simulation. The method is demonstrated by visualizing the Riemann surface structure of real surfaces represented as triangle meshes.
Morse theory is a powerful tool in its applications to computational topology, computer graphics and geometric modeling. It was originally formulated for smooth manifolds. Recently, Robin Forman formulated a version o...
详细信息
Morse theory is a powerful tool in its applications to computational topology, computer graphics and geometric modeling. It was originally formulated for smooth manifolds. Recently, Robin Forman formulated a version of this theory for discrete structures such as cell complexes. It opens up several categories of interesting objects (particularly meshes) to applications of Morse theory. Once a Morse function has been defined on a manifold, then information about its topology can be deduced from its critical elements. The main objective of this paper is to introduce a linear algorithm to define optimal discrete Morse functions on discrete 2-manifolds, where optimality entails having the least number of critical elements. The algorithm presented is also extended to general finite cell complexes of dimension at most 2, with no guarantee of optimality. (C) 2003 Elsevier B.V. All rights reserved.
暂无评论