咨询与建议

限定检索结果

文献类型

  • 61 篇 会议
  • 11 篇 期刊文献

馆藏范围

  • 72 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 65 篇 工学
    • 61 篇 计算机科学与技术...
    • 24 篇 软件工程
    • 10 篇 控制科学与工程
    • 6 篇 电气工程
    • 2 篇 信息与通信工程
    • 1 篇 测绘科学与技术
    • 1 篇 环境科学与工程(可...
  • 5 篇 教育学
    • 5 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 4 篇 理学
    • 2 篇 数学
    • 2 篇 地球物理学
    • 1 篇 天文学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 72 篇 computational no...
  • 18 篇 data science
  • 6 篇 exploratory prog...
  • 5 篇 jupyter
  • 5 篇 machine learning
  • 4 篇 visualization
  • 3 篇 software visuali...
  • 3 篇 jupyter notebook
  • 3 篇 reproducibility
  • 3 篇 exploratory data...
  • 3 篇 artificial intel...
  • 3 篇 data analysis
  • 2 篇 insight communic...
  • 2 篇 copilot
  • 2 篇 paradigms
  • 2 篇 visual analytics
  • 2 篇 code history
  • 2 篇 machine learning...
  • 2 篇 human-ai collabo...
  • 2 篇 education

机构

  • 5 篇 univ washington ...
  • 3 篇 univ waterloo wa...
  • 3 篇 microsoft res re...
  • 2 篇 univ michigan an...
  • 2 篇 georgia inst tec...
  • 2 篇 hong kong univ s...
  • 2 篇 ibm res yorktown...
  • 2 篇 microsoft res as...
  • 2 篇 swiss fed inst t...
  • 2 篇 virginia tech bl...
  • 2 篇 mit csail cambri...
  • 2 篇 univ utah salt l...
  • 2 篇 univ glasgow gla...
  • 2 篇 univ chicago il ...
  • 2 篇 microsoft redmon...
  • 2 篇 sichuan univ peo...
  • 2 篇 univ calif san d...
  • 2 篇 univ calif berke...
  • 1 篇 univ calif san d...
  • 1 篇 northwestern uni...

作者

  • 5 篇 zhao jian
  • 5 篇 wang april yi
  • 4 篇 o'leary jasper t...
  • 4 篇 barik titus
  • 4 篇 hohman fred
  • 4 篇 north chris
  • 4 篇 oney steve
  • 4 篇 brooks christoph...
  • 3 篇 wenskovitch john
  • 3 篇 peek nadya
  • 3 篇 liu xuye
  • 2 篇 wang dakuo
  • 2 篇 drosos ian
  • 2 篇 li haotian
  • 2 篇 patel kayur
  • 2 篇 ren donghao
  • 2 篇 wongsuphasawat k...
  • 2 篇 mcnutt andrew
  • 2 篇 head andrew
  • 2 篇 li xingjun

语言

  • 72 篇 英文
检索条件"主题词=computational notebooks"
72 条 记 录,以下是51-60 订阅
排序:
Towards Understanding Data Analysis Workflows using a Large Notebook Corpus  19
Towards Understanding Data Analysis Workflows using a Large ...
收藏 引用
ACM SIGMOD International Conference on Management of Data (SIGMOD)
作者: Rehman, Mohammed Suhail Univ Chicago Chicago IL 60637 USA
The advent of big data analysis as a profession as well as a hobby has brought an increase in novel forms of data exploration and analysis, particularly ad-hoc analysis. Analysis of raw datasets using frameworks such ... 详细信息
来源: 评论
Shifting Left for Early Detection of Machine-Learning Bugs  25th
Shifting Left for Early Detection of Machine-Learning Bugs
收藏 引用
25th International Symposium on Formal Methods (FM)
作者: Liblit, Ben Luo, Linghui Molina, Alejandro Mukherjee, Rajdeep Patterson, Zachary Piskachev, Goran Schaf, Martin Tripp, Omer Visser, Willem Amazon Web Serv Arlington TX USA Amazon Web Serv Berlin Germany Amazon Seattle WA USA Univ Texas Dallas Richardson TX 75083 USA Amazon Web Serv Santa Clara CA USA Amazon Web Serv New York NY USA
computational notebooks are widely used for machine learning (ML). However, notebooks raise new correctness concerns beyond those found in traditional programming environments. ML library APIs are easy to misuse, and ... 详细信息
来源: 评论
Leveraging Large Language Models to Enhance Domain Expert Inclusion in Data Science Workflows
Leveraging Large Language Models to Enhance Domain Expert In...
收藏 引用
CHI Conference on Human Factors in Computing Sytems (CHI)
作者: Shih, Jasmine Y. Mohanty, Vishal Katsis, Yannis Subramonyam, Hari Stanford Univ Stanford CA 94305 USA IBM Res Yorktown Hts NY USA
Domain experts can play a crucial role in guiding data scientists to optimize machine learning models while ensuring contextual relevance for downstream use. However, in current workflows, such collaboration is challe... 详细信息
来源: 评论
Notes on notebooks: Is Jupyter the Bringer of Jollity?
Notes on Notebooks: Is Jupyter the Bringer of Jollity?
收藏 引用
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software (Onward) Part of part of SPLASH Conference
作者: Singer, Jeremy Univ Glasgow Glasgow Lanark Scotland
As the interactive computational notebook becomes a more prominent code development medium, we examine advantages and disadvantages of this particular source code format. We specify the structure of a coding notebook ... 详细信息
来源: 评论
Colaroid: A Literate Programming Approach for Authoring Explorable Multi-Stage Tutorials  23
Colaroid: A Literate Programming Approach for Authoring Expl...
收藏 引用
CHI conference on Human Factors in Computing Systems (CHI)
作者: Wang, April Yi Head, Andrew Zhang, Ashley Oney, Steve Brooks, Christopher Univ Michigan Ann Arbor MI 48109 USA Univ Penn Philadelphia PA USA
Multi-stage programming tutorials are key learning resources for programmers, using progressive incremental steps to teach them how to build larger software systems. A good multi-stage tutorial describes the code clea... 详细信息
来源: 评论
Notational Programming for Notebook Environments: A Case Study with Quantum Circuits  22
Notational Programming for Notebook Environments: A Case Stu...
收藏 引用
35th Annual ACM Symposium on User Interface Software and Technology (UIST)
作者: Arawjo, Ian DeArmas, Anthony J. Roberts, Michael Basu, Shrutarshi Parikh, Tapan Cornell Univ Ithaca NY 14853 USA Harvard Univ Cambridge MA USA Cornell Tech New York NY USA
We articulate a vision for computer programming that includes pen-based computing, a paradigm we term notational programming. Notational programming blurs contexts: certain typewritten variables can be referenced in h... 详细信息
来源: 评论
Symphony: Composing Interactive Interfaces for Machine Learning  22
Symphony: Composing Interactive Interfaces for Machine Learn...
收藏 引用
CHI Conference on Human Factors in Computing Systems (CHI)
作者: Baeuerle, Alex Cabrera, Angel Alexander Hohman, Fred Maher, Megan Koski, David Suau, Xavier Barik, Titus Moritz, Dominik Ulm Univ Ulm Germany Carnegie Mellon Univ Pittsburgh PA USA Apple Seattle WA USA Apple Cupertino CA USA Apple Barcelona Spain Apple Pittsburgh PA USA
Interfaces for machine learning (ML), information and visualizations about models or data, can help practitioners build robust and responsible ML systems. Despite their benefits, recent studies of ML teams and our int... 详细信息
来源: 评论
JupyterLab in Retrograde: Contextual Notifications That Highlight Fairness and Bias Issues for Data Scientists  24
JupyterLab in Retrograde: Contextual Notifications That High...
收藏 引用
ACM CHI Conference on Human Factors in Computing Sytems (CHI)
作者: Harrison, Galen Bryson, Kevin Bamba, Ahmad Emmanuel Balla Dovichi, Luca Binion, Aleksander Herrmann Borem, Arthur Ur, Blase Univ Virginia Charlottesville VA 22903 USA Univ Chicago Chicago IL USA
Current algorithmic fairness tools focus on auditing completed models, neglecting the potential downstream impacts of iterative decisions about cleaning data and training machine learning models. In response, we devel... 详细信息
来源: 评论
The Future of Notebook Programming Is Fluid
The Future of Notebook Programming Is Fluid
收藏 引用
ACM CHI Conference on Human Factors in Computing Systems (CHI)
作者: Kery, Mary Beth Ren, Donghao Wongsuphasawat, Kanit Hohman, Fred Patel, Kayur Carnegie Mellon Univ Sch Comp Sci Pittsburgh PA 15213 USA Apple Inc Seattle WA USA Georgia Inst Technol Coll Comp Atlanta GA 30332 USA
A new kind of widget has begun appearing in the data science notebook programming community that can fluidly switch its own appearance between two representations: a graphical user interface (GUI) tool and plain textu... 详细信息
来源: 评论
On the Design of AI-powered Code Assistants for notebooks  23
On the Design of AI-powered Code Assistants for Notebooks
收藏 引用
CHI conference on Human Factors in Computing Systems (CHI)
作者: McNutt, Andrew Wang, Chenglong DeLine, Rob Drucker, Steven M. Univ Chicago Chicago IL 60637 USA Microsoft Res Redmond WA USA
AI-powered code assistants, such as Copilot, are quickly becoming a ubiquitous component of contemporary coding contexts. Among these environments, computational notebooks, such as Jupyter, are of particular interest ... 详细信息
来源: 评论