The US Department of Energy Office of Science and the National Nuclear Security Administration initiated the Exascale Computing Project (ECP) in 2016 to prepare mission-relevant applications and scientific software fo...
详细信息
The US Department of Energy Office of Science and the National Nuclear Security Administration initiated the Exascale Computing Project (ECP) in 2016 to prepare mission-relevant applications and scientific software for the delivery of the exascale computers starting in 2023. The ECP currently supports 24 efforts directed at specific applications and six supporting co-design projects. These 24 application projects contain 62 application codes that are implemented in three high-level languages-C, C++, and Fortran-and use 22 combinations of graphical processing unit programming models. The most common implementation language is C++, which is used in 53 different application codes. The most common programming models across ECP applications are CUDA and Kokkos, which are employed in 15 and 14 applications, respectively. This article provides a survey of the programming languages and models used in the ECP applications codebase that will be used to achieve performance on the future exascale hardware platforms.
Multiphysics coupling presents a significant challenge in terms of both computational accuracy and performance. Achieving high performance on coupled simulations can be particularly challenging in a high-performance c...
详细信息
Multiphysics coupling presents a significant challenge in terms of both computational accuracy and performance. Achieving high performance on coupled simulations can be particularly challenging in a high-performance computing context. The US Department of Energy Exascale Computing Project has the mission to prepare mission-relevant applications for the delivery of the exascale computers starting in 2023. Many of these applications require multiphysics coupling, and the implementations must be performant on exascale hardware. In this special issue we feature six articles performing advanced multiphysics coupling that span the computational science domains in the Exascale Computing Project.
暂无评论