咨询与建议

限定检索结果

文献类型

  • 18 篇 期刊文献

馆藏范围

  • 18 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 理学
    • 16 篇 统计学(可授理学、...
    • 4 篇 数学
    • 1 篇 地球物理学
    • 1 篇 生物学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 1 篇 工学
    • 1 篇 计算机科学与技术...
  • 1 篇 农学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
  • 1 篇 管理学
    • 1 篇 公共管理

主题

  • 18 篇 computationally ...
  • 8 篇 bayesian methods
  • 6 篇 statistical comp...
  • 3 篇 algorithms
  • 2 篇 large sample the...
  • 2 篇 generalized line...
  • 2 篇 neuroimaging
  • 2 篇 statistical mode...
  • 2 篇 spatial analysis
  • 2 篇 applications and...
  • 2 篇 bootstrap
  • 2 篇 effective sample...
  • 2 篇 statistical infe...
  • 2 篇 expectation-maxi...
  • 2 篇 epsilon-informat...
  • 1 篇 finite precision
  • 1 篇 goodness-of-fit ...
  • 1 篇 simulation
  • 1 篇 regression
  • 1 篇 measurement erro...

机构

  • 2 篇 indiana univ dep...
  • 2 篇 johns hopkins un...
  • 2 篇 univ calif berke...
  • 2 篇 johns hopkins un...
  • 1 篇 york teaching ho...
  • 1 篇 cuny baruch coll...
  • 1 篇 nasa washington ...
  • 1 篇 us forest serv w...
  • 1 篇 johns hopkins un...
  • 1 篇 king abdullah un...
  • 1 篇 stanford univ de...
  • 1 篇 univ texas austi...
  • 1 篇 univ illinois de...
  • 1 篇 montana state un...
  • 1 篇 univ otago dept ...
  • 1 篇 columbia univ de...
  • 1 篇 council sci & in...
  • 1 篇 debian & r proje...
  • 1 篇 department of co...
  • 1 篇 kennedy krieger ...

作者

  • 2 篇 mueller peter
  • 2 篇 datta abhirup
  • 2 篇 caffo brian s.
  • 2 篇 mejia amanda f.
  • 2 篇 thall peter f.
  • 2 篇 morita satoshi
  • 2 篇 nebel mary beth
  • 1 篇 lombard f
  • 1 篇 saha arkajyoti
  • 1 篇 stoltz marnus
  • 1 篇 finley andrew o.
  • 1 篇 howes robin
  • 1 篇 blei david m.
  • 1 篇 mcauliffe jon d.
  • 1 篇 guo ying
  • 1 篇 stewart philip s...
  • 1 篇 geyer charles
  • 1 篇 stoltz gene
  • 1 篇 bates stephen
  • 1 篇 mohammed mohamme...

语言

  • 17 篇 英文
  • 1 篇 其他
检索条件"主题词=computationally intensive methods"
18 条 记 录,以下是1-10 订阅
排序:
Cross-Validation: What Does It Estimate and How Well Does It Do It?
收藏 引用
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 2024年 第546期119卷 1434-1445页
作者: Bates, Stephen Hastie, Trevor Tibshirani, Robert Univ Calif Berkeley Dept Stat Berkeley CA 94720 USA Univ Calif Berkeley EECS Berkeley CA 94720 USA Stanford Univ Dept Stat & Biomed Data Sci Stanford CA USA Stanford Univ Dept Biomed Data Sci & Stat Stanford CA USA
Cross-validation is a widely used technique to estimate prediction error, but its behavior is complex and not fully understood. Ideally, one would like to think that cross-validation estimates the prediction error for... 详细信息
来源: 评论
Template Independent Component Analysis with Spatial Priors for Accurate Subject-Level Brain Network Estimation and Inference
收藏 引用
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 2023年 第2期32卷 413-433页
作者: Mejia, Amanda F. Bolin, David Yue, Yu Ryan Wang, Jiongran Caffo, Brian S. Nebel, Mary Beth Indiana Univ Dept Stat Bloomington IN 47408 USA King Abdullah Univ Sci & Technol CEMSE Div Stat Program Thuwal Saudi Arabia CUNY Baruch Coll Paul H Chook Dept Informat Syst & Stat New York NY 10021 USA Johns Hopkins Univ Dept Biostat Baltimore MD 21205 USA Kennedy Krieger Inst eCtr Neurodev & Imaging Res Baltimore MD USA Johns Hopkins Univ Dept Neurol Baltimore MD 21218 USA
Independent component analysis is commonly applied to functional magnetic resonance imaging (fMRI) data to extract independent components (ICs) representing functional brain networks. While ICA produces reliable group... 详细信息
来源: 评论
An importance sampling approach for reliable and efficient inference in Bayesian ordinary differential equation models
收藏 引用
Stat 2023年 第1期12卷
作者: Timonen, Juho Siccha, Nikolas Bales, Ben Lähdesmäki, Harri Vehtari, Aki Department of Computer Science Aalto University Espoo 02150 Finland Earth Institute University of Columbia New York 10025 NY United States
Statistical models can involve implicitly defined quantities, such as solutions to nonlinear ordinary differential equations (ODEs), that unavoidably need to be numerically approximated in order to evaluate the model.... 详细信息
来源: 评论
A comparison of logistic regression models with alternative machine learning methods to predict the risk of in-hospital mortality in emergency medical admissions via external validation
收藏 引用
HEALTH INFORMATICS JOURNAL 2020年 第1期26卷 34-44页
作者: Faisal, Muhammad Scally, Andy Howes, Robin Beatson, Kevin Richardson, Donald Mohammed, Mohammed A. Univ Bradford Bradford W Yorkshire England Bradford Inst Hlth Res Bradford W Yorkshire England Northern Lincolnshire & Goole Hosp NHS Fdn Trust Scunthorpe England York Teaching Hosp NHS Fdn Trust York N Yorkshire England
We compare the performance of logistic regression with several alternative machine learning methods to estimate the risk of death for patients following an emergency admission to hospital based on the patients' fi... 详细信息
来源: 评论
Template Independent Component Analysis: Targeted and Reliable Estimation of Subject-level Brain Networks Using Big Data Population Priors
收藏 引用
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 2020年 第531期115卷 1151-1177页
作者: Mejia, Amanda F. Nebel, Mary Beth Wang, Yikai Caffo, Brian S. Guo, Ying Indiana Univ Dept Stat Bloomington IN 47408 USA Kennedy Krieger Inst Ctr Neurodev & Imaging Res Baltimore MD USA Johns Hopkins Univ Dept Neurol Baltimore MD 21218 USA Emory Univ Rollins Sch Publ Hlth Dept Biostat & Bioinformat Atlanta GA 30322 USA Johns Hopkins Univ Dept Biostat Baltimore MD 21205 USA
Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of p... 详细信息
来源: 评论
Acceleration of hidden Markov model fitting using graphical processing units, with application to low-frequency tremor classification
收藏 引用
COMPUTERS & GEOSCIENCES 2021年 156卷 104902-104902页
作者: Stoltz, Marnus Stoltz, Gene Obara, Kazushige Wang, Ting Bryant, David Univ Otago Dept Math & Stat Otago New Zealand Council Sci & Ind Res South Africa Pretoria South Africa Univ Tokyo Earthquake Res Inst Tokyo Japan
Hidden Markov models (HMMs) are general purpose models for time-series data widely used across the sciences because of their flexibility and elegance. Fitting HMMs can often be computationally demanding and time consu... 详细信息
来源: 评论
On the error in Laplace approximations of high-dimensional integrals
收藏 引用
STAT 2021年 第1期10卷
作者: Ogden, Helen Univ Southampton Sch Math Sci Southampton S017 1BJ Hants England
Laplace approximations are commonly used to approximate high-dimensional integrals in statistical applications, but the quality of such approximations as the dimension of the integral grows is not well understood. In ... 详细信息
来源: 评论
Low-rank approximation for smoothing spline via eigensystem truncation
收藏 引用
STAT 2021年 第1期10卷
作者: Xu, Danqing Wang, Yuedong Univ Calif Santa Barbara Dept Stat & Appl Probabil Santa Barbara CA 93106 USA
Smoothing splines provide a powerful and flexible means for nonparametric estimation and inference. With a cubic time complexity, fitting smoothing spline models to large data is computationally prohibitive. In this p... 详细信息
来源: 评论
Likelihood-based inference for generalized linear mixed models: Inference with the R package glmm
收藏 引用
STAT 2021年 第1期10卷
作者: Knudson, Christina Benson, Sydney Geyer, Charles Jones, Galin Univ St Thomas Dept Math OSS 2012115 Summit Ave St Paul MN 55105 USA Univ Minnesota Div Biostat Minneapolis MN 55455 USA Univ Minnesota Sch Stat Minneapolis MN 55455 USA
The R package glmm enables likelihood-based inference for generalized linear mixed models with a canonical link. No other publicly available software accurately conducts likelihood-based inference for generalized line... 详细信息
来源: 评论
Efficient Algorithms for Bayesian Nearest Neighbor Gaussian Processes
收藏 引用
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 2019年 第2期28卷 401-414页
作者: Finley, Andrew O. Datta, Abhirup Cook, Bruce D. Morton, Douglas C. Andersen, Hans E. Banerjee, Sudipto Michigan State Univ E Lansing MI 48824 USA Johns Hopkins Univ Baltimore MD USA NASA Washington DC 20546 USA US Forest Serv Washington DC 20250 USA Univ Calif Los Angeles Los Angeles CA 90024 USA
We consider alternate formulations of recently proposed hierarchical nearest neighbor Gaussian process (NNGP) models for improved convergence, faster computing time, and more robust and reproducible Bayesian inference... 详细信息
来源: 评论