咨询与建议

限定检索结果

文献类型

  • 5 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 7 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 6 篇 工学
    • 6 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 1 篇 软件工程
  • 4 篇 理学
    • 4 篇 数学

主题

  • 7 篇 computations on ...
  • 2 篇 theory of comput...
  • 1 篇 analysis of algo...
  • 1 篇 performance
  • 1 篇 partially observ...
  • 1 篇 algebraic algori...
  • 1 篇 motzkin-straus t...
  • 1 篇 computational co...
  • 1 篇 polynomial syste...
  • 1 篇 homotopy continu...
  • 1 篇 sum-of-square-ro...
  • 1 篇 bilinear program
  • 1 篇 polynomial multi...
  • 1 篇 chebyshev basis
  • 1 篇 solvers
  • 1 篇 cell decompositi...
  • 1 篇 nonlinear optimi...
  • 1 篇 matrix fractiona...
  • 1 篇 stochastic contr...
  • 1 篇 nonlinear equati...

机构

  • 1 篇 univ wisconsin e...
  • 1 篇 tata inst fundam...
  • 1 篇 univ pernambuco ...
  • 1 篇 colorado state u...
  • 1 篇 univ notre dame ...
  • 1 篇 tsinghua univ in...
  • 1 篇 brown univ dept ...
  • 1 篇 ucl dept comp sc...
  • 1 篇 univ luxembourg ...
  • 1 篇 carleton univ sc...
  • 1 篇 penn state univ ...
  • 1 篇 mit 77 massachus...
  • 1 篇 tokyo inst techn...
  • 1 篇 univ montpellier...
  • 1 篇 univ sheffield d...
  • 1 篇 gen motors res &...

作者

  • 1 篇 winkler joab r.
  • 1 篇 lao xin
  • 1 篇 sommese andrew j...
  • 1 篇 giorgi pascal
  • 1 篇 hasan madina
  • 1 篇 lima juliano b.
  • 1 篇 kinoshita yasuno...
  • 1 篇 panario daniel
  • 1 篇 harsha prahladh
  • 1 篇 goyal rohan
  • 1 篇 brake daniel a.
  • 1 篇 hauenstein jonat...
  • 1 篇 hao wenrui
  • 1 篇 li baitian
  • 1 篇 kumar mrinal
  • 1 篇 vlassis nikos
  • 1 篇 wang qiang
  • 1 篇 barber david
  • 1 篇 bates daniel j.
  • 1 篇 littman michael ...

语言

  • 7 篇 英文
检索条件"主题词=computations on polynomials"
7 条 记 录,以下是1-10 订阅
排序:
On Polynomial Multiplication in Chebyshev Basis
收藏 引用
IEEE TRANSACTIONS ON COMPUTERS 2012年 第6期61卷 780-789页
作者: Giorgi, Pascal Univ Montpellier 2 LIRMM CNRS F-34095 Montpellier France
In a recent paper, Lima, Panario, and Wang have provided a new method to multiply polynomials expressed in Chebyshev basis which reduces the total number of multiplication for small degree polynomials. Although their ... 详细信息
来源: 评论
The computation of multiple roots of a polynomial
收藏 引用
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 2012年 第14期236卷 3478-3497页
作者: Winkler, Joab R. Lao, Xin Hasan, Madina Univ Sheffield Dept Comp Sci Sheffield S1 4DP S Yorkshire England
This paper considers structured matrix methods for the calculation of the theoretically exact roots of a polynomial whose coefficients are corrupted by noise, and whose exact form contains multiple roots. The addition... 详细信息
来源: 评论
A Karatsuba-Based Algorithm for Polynomial Multiplication in Chebyshev Form
收藏 引用
IEEE TRANSACTIONS ON COMPUTERS 2010年 第6期59卷 835-841页
作者: Lima, Juliano B. Panario, Daniel Wang, Qiang Univ Pernambuco Polytech Sch Pernambuco BR-52041230 Recife PE Brazil Carleton Univ Sch Math & Stat Ottawa ON K1S 5B6 Canada
In this paper, we present a new method for multiplying polynomials in Chebyshev form. Our approach has two steps. First, the well-known Karatsuba's algorithm is applied to polynomials constructed by using Chebyshe... 详细信息
来源: 评论
Power Series Composition in Near-Linear Time  65
Power Series Composition in Near-Linear Time
收藏 引用
65th Symposium on Foundations of Computer Science
作者: Kinoshita, Yasunori Li, Baitian Tokyo Inst Technol Tokyo Japan Tsinghua Univ Inst Interdisciplinary Informat Sci Beijing Peoples R China
We present an algebraic algorithm that computes the composition of two power series in softly linear time complexity. The previous best algorithms are O(n(1+o(1))) non-algebraic algorithm by Kedlaya and Umans (FOCS 20... 详细信息
来源: 评论
Fast list decoding of univariate multiplicity and folded Reed-Solomon codes  65
Fast list decoding of univariate multiplicity and folded Ree...
收藏 引用
65th Symposium on Foundations of Computer Science
作者: Goyal, Rohan Harsha, Prahladh Kumar, Mrinal Shankar, Ashutosh MIT 77 Massachusetts Ave Cambridge MA 02139 USA Tata Inst Fundamental Res Mumbai Maharashtra India
We show that the known list-decoding algorithms for univariate multiplicity and folded Reed-Solomon (FRS) codes can be made to run in (O) over tilde (n) time. Univariate multiplicity codes and FRS codes are natural va... 详细信息
来源: 评论
Algorithm 976: Bertini_real: Numerical Decomposition of Real Algebraic Curves and Surfaces
收藏 引用
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE 2017年 第1期44卷 10-10页
作者: Brake, Daniel A. Bates, Daniel J. Hao, Wenrui Hauenstein, Jonathan D. Sommese, Andrew J. Wampler, Charles W. Univ Wisconsin Eau Claire Hibbard Hall 508105 Garfield Ave Eau Claire WI 54701 USA Colorado State Univ Dept Math Ft Collins CO 80523 USA Penn State Univ Dept Math University Pk PA 16802 USA Univ Notre Dame Dept Appl & Computat Math & Stat Notre Dame IN 46556 USA Gen Motors Res & Dev Mail Code 480-106-22430500 Mound Rd Warren MI 48090 USA
Bertini_real is a compiled command line program for numerically decomposing the real portion of a positive-dimensional complex component of an algebraic set. The software uses homotopy continuation to solve a series o... 详细信息
来源: 评论
On the Computational Complexity of Stochastic Controller Optimization in POMDPs
收藏 引用
ACM TRANSACTIONS ON COMPUTATION THEORY 2012年 第4期4卷 12-12页
作者: Vlassis, Nikos Littman, Michael L. Barber, David Univ Luxembourg Luxembourg Ctr Syst Biomed 7 Ave Hauts Fourneaux L-4362 Esch Belval Luxembourg Brown Univ Dept Comp Sci Providence RI 02912 USA UCL Dept Comp Sci London WC1E 6BT England
We show that the problem of finding an optimal stochastic blind controller in a Markov decision process is an NP-hard problem. The corresponding decision problem is NP-hard in PSPACE and SQRT-SUM-hard, hence placing i... 详细信息
来源: 评论