咨询与建议

限定检索结果

文献类型

  • 38 篇 会议
  • 26 篇 期刊文献
  • 2 篇 学位论文

馆藏范围

  • 66 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 60 篇 工学
    • 41 篇 电气工程
    • 34 篇 计算机科学与技术...
    • 8 篇 材料科学与工程(可...
    • 8 篇 软件工程
    • 6 篇 仪器科学与技术
    • 5 篇 电子科学与技术(可...
    • 5 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 信息与通信工程
    • 1 篇 化学工程与技术
  • 12 篇 理学
    • 10 篇 物理学
    • 4 篇 化学
    • 1 篇 数学
    • 1 篇 生物学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...

主题

  • 66 篇 computing in mem...
  • 6 篇 rram
  • 5 篇 reram
  • 5 篇 non-volatile mem...
  • 3 篇 neural networks
  • 3 篇 neural network
  • 3 篇 artificial intel...
  • 3 篇 memristor
  • 3 篇 convolutional ne...
  • 2 篇 low power
  • 2 篇 reliability
  • 2 篇 von neumann bott...
  • 2 篇 computer archite...
  • 2 篇 hyperdimensional...
  • 2 篇 process variatio...
  • 2 篇 dnn accelerator
  • 2 篇 analog computing
  • 2 篇 flash memory
  • 2 篇 nor flash
  • 2 篇 machine learning

机构

  • 3 篇 natl tsing hua u...
  • 3 篇 beihang univ hef...
  • 3 篇 neumem co ltd pe...
  • 2 篇 shandong univ sc...
  • 2 篇 univ chinese aca...
  • 2 篇 univ calif irvin...
  • 2 篇 chinese acad sci...
  • 2 篇 peking univ sch ...
  • 2 篇 purdue univ sch ...
  • 2 篇 univ elect sci &...
  • 2 篇 beihang univ fer...
  • 2 篇 beijing adv inno...
  • 2 篇 peking univ sch ...
  • 2 篇 shandong univ sc...
  • 2 篇 beihang univ sch...
  • 1 篇 daegu gyeongbuk ...
  • 1 篇 beihang univ fer...
  • 1 篇 penn state univ ...
  • 1 篇 university of sc...
  • 1 篇 southeast univ s...

作者

  • 4 篇 zhan xuepeng
  • 4 篇 liu jing
  • 4 篇 chen jiezhi
  • 4 篇 wu jixuan
  • 4 篇 huang ru
  • 4 篇 feng yang
  • 3 篇 zhang youguang
  • 3 篇 wang jinkai
  • 3 篇 wang chengcheng
  • 3 篇 zhang junyu
  • 3 篇 qi yueran
  • 3 篇 si xin
  • 3 篇 sun zhaohui
  • 3 篇 zhang yue
  • 3 篇 wu huaqiang
  • 3 篇 zhang qingtian
  • 2 篇 huang qianqian
  • 2 篇 wang hongyu
  • 2 篇 motaman seyedham...
  • 2 篇 raghunathan anan...

语言

  • 64 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=computing in memory"
66 条 记 录,以下是41-50 订阅
排序:
Hyperdimensional computing for Robust and Efficient Unsupervised Learning  57
Hyperdimensional Computing for Robust and Efficient Unsuperv...
收藏 引用
57th Asilomar Conference on Signals, Systems and Computers
作者: Yun, Sanggeon Barkam, Hamza Errahmouni Genssler, Paul R. Latapie, Hugo Amrouch, Hussam Imani, Mohsen Univ Calif Irvine Irvine CA 92697 USA Univ Stuttgart Stuttgart Germany CISCO Syst San Jose CA USA Munich Inst Robot & Machine Intelligence Munich Germany Tech Univ Munich Munich Germany
Clustering has emerged as a critical tool in diverse fields. Nevertheless, its high computational cost has been a persistent challenge, particularly for large-scale datasets. To address this, various compute-in-memory... 详细信息
来源: 评论
The trend of emerging non-volatile TCAM for parallel search and AI applications
收藏 引用
Chip 2022年 第2期1卷 16-26页
作者: Ke-Ji Zhou Chen Mu Bo Wen Xu-Meng Zhang Guang-Jian Wu Can Li Hao Jiang Xiao-Yong Xue Shang Tang Chi-Xiao Chen Qi Liu Frontier Institute of Chip and System Fudan UniversityShanghai 200438China Shanghai Qi Zhi Institute Shanghai 200232China Frontier Institute of Chip and System Fudan UniversityShanghai 201203China Department of Electrical and Electronic Engineering The University of Hong KongHong Kong 999077China State Key Laboratory of ASIC and System Fudan UniversityShanghai 201203China BirenTech Research Shanghai 201114China
In this paper, we review the recent trends in parallel search and artificial intelligence (AI) applications using emerging non-volatile ternary content addressable memory (TCAM). Firstly, the principle and development... 详细信息
来源: 评论
A Fully-Integrated Memristor Chip for Edge Learning
收藏 引用
Nano-Micro Letters 2024年 第9期16卷 123-127页
作者: Yanhong Zhang Liang Chu Wenjun Li School of Electronics and Information Hangzhou Dianzi UniversityHangzhou 310018People’s Republic of China
It is still challenging to fully integrate computing in memory chip as edge learning *** recent work published on Science,a fully-integrated chip based on neuromorphic memristors was developed for edge learning as art... 详细信息
来源: 评论
AI: From Deep Learning to In-memory computing  33
AI: From Deep Learning to In-Memory Computing
收藏 引用
Conference on Metrology, Inspection, and Process Control for Microlithography XXXIII
作者: Lung, Hsiang-Lan Macronix 680 North McCarthy BlvdSuite 200 Milpitas CA 95035 USA
In the past few years, Artificial Intelligence (AI) has been a subject of intense media hype. Machine learning, deep learning (DL), and AI come up in countless articles, often outside of technology-minded publications... 详细信息
来源: 评论
Improving model robustness to weight noise via consistency regularization
收藏 引用
MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2024年 第3期5卷 035065页
作者: Hou, Yaoqi Zhang, Qingtian Wang, Namin Wu, Huaqiang Beijing Adv Innovat Ctr Integrated Circuits Beijing Peoples R China Tsinghua Univ Sch Integrated Circuits Beijing Peoples R China
As an emerging computing architecture, the computing-in-memory (CIM) exhibits significant potential for energy efficiency and computing power in artificial intelligence applications. However, the intrinsic non-idealit... 详细信息
来源: 评论
A Booth-based Digital Compute-In-memory Marco for Processing Transformer Model
A Booth-based Digital Compute-In-Memory Marco for Processing...
收藏 引用
IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)
作者: Feng, Zhongyuan Wang, Bo Zhang, Zhaoyang Guo, An Si, Xin Southeast Univ Sch Microelect Nanjing Peoples R China
Transformer model has achieved excellent results in many fields, owing of its huge data volume and high precision requirements, the traditional analog compute-in-memory circuit can no longer meet its needs. To solve t... 详细信息
来源: 评论
Multi-Function CIM Array for Genome Alignment Applications built with Fully Digital Flow  8
Multi-Function CIM Array for Genome Alignment Applications b...
收藏 引用
8th IEEE Nordic Circuits and Systems Conference (NorCAS)
作者: Lanius, Christian Gemmeke, Tobias Rhein Westfal TH Aachen Chair Integrated Digital Syst & Circuit Design Aachen Germany
With the advent of next generation genome sequencing machines, the number of genomic reads has increased in the last few years. The assembly and alignment of the reads to reference genomes is computationally complex: ... 详细信息
来源: 评论
Testing and Reliability of computing-In Memories: Solutions and Challenges  6
Testing and Reliability of Computing-In Memories: Solutions ...
收藏 引用
6th IEEE International Test Conference in Asia (ITC-Asia)
作者: Li, Jin-Fu Natl Cent Univ Dept Elect Engn Adv Reliable Syst ARES Lab Taoyuan 320 Taiwan
Various computing-in-memory designs have been proposed as a possible computing architecture for the datacentric computing applications. Existing memories such as random access memories, flash memories, and emerging me... 详细信息
来源: 评论
HfO2-based Ferroelectric Devices for Low Power Applications  6
HfO2-based Ferroelectric Devices for Low Power Applications
收藏 引用
6th IEEE Electron Devices Technology and Manufacturing Conference (EDTM)
作者: Huang, Qianqian Yang, Mengxuan Luo, Jin Su, Chang Huang, Ru Peking Univ Sch Integrated Circuits Key Lab Microelect Devices & Circuits MOE Beijing 100871 Peoples R China Peking Univ Beijing Lab Future IC Technol & Sci Beijing 100871 Peoples R China
HfO2-based ferroelectric devices have attracted extensive attention for diverse applications due to its fully CMOS compatibility and highly scalability. For low-power logic applications, we experimentally observed the... 详细信息
来源: 评论
A Study on the Channel Holes' Diameter Effects of High-Performance Vertical-Channel Flash memory Cells
收藏 引用
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY 2024年 第10期13卷
作者: Yan, Zijin Zhu, Huilong Yang, Hong Li, Junjie Lu, Shunshun Zhang, Chenchen Yang, Shuai Bai, Tianyu Zhao, Kaiqiang Xiang, Liang Zhang, Yongkui Li, Junfeng Luo, Jun Ye, T. C. Chinese Acad Sci Inst Microelect Integrated Circuit Adv Proc R&D Ctr Beijing 100029 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China
High-performance vertical-channel flash (HVF) memory cells were fabricated on the single crystalline Si (c-Si) sidewalls of the cylindrical deep wells in c-Si substrate. To investigate the diameter effects of the cyli... 详细信息
来源: 评论