咨询与建议

限定检索结果

文献类型

  • 38 篇 会议
  • 26 篇 期刊文献
  • 2 篇 学位论文

馆藏范围

  • 66 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 60 篇 工学
    • 41 篇 电气工程
    • 34 篇 计算机科学与技术...
    • 8 篇 材料科学与工程(可...
    • 8 篇 软件工程
    • 6 篇 仪器科学与技术
    • 5 篇 电子科学与技术(可...
    • 5 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 信息与通信工程
    • 1 篇 化学工程与技术
  • 12 篇 理学
    • 10 篇 物理学
    • 4 篇 化学
    • 1 篇 数学
    • 1 篇 生物学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...

主题

  • 66 篇 computing in mem...
  • 6 篇 rram
  • 5 篇 reram
  • 5 篇 non-volatile mem...
  • 3 篇 neural networks
  • 3 篇 neural network
  • 3 篇 artificial intel...
  • 3 篇 memristor
  • 3 篇 convolutional ne...
  • 2 篇 low power
  • 2 篇 reliability
  • 2 篇 von neumann bott...
  • 2 篇 computer archite...
  • 2 篇 hyperdimensional...
  • 2 篇 process variatio...
  • 2 篇 dnn accelerator
  • 2 篇 analog computing
  • 2 篇 flash memory
  • 2 篇 nor flash
  • 2 篇 machine learning

机构

  • 3 篇 natl tsing hua u...
  • 3 篇 beihang univ hef...
  • 3 篇 neumem co ltd pe...
  • 2 篇 shandong univ sc...
  • 2 篇 univ chinese aca...
  • 2 篇 univ calif irvin...
  • 2 篇 chinese acad sci...
  • 2 篇 peking univ sch ...
  • 2 篇 purdue univ sch ...
  • 2 篇 univ elect sci &...
  • 2 篇 beihang univ fer...
  • 2 篇 beijing adv inno...
  • 2 篇 peking univ sch ...
  • 2 篇 shandong univ sc...
  • 2 篇 beihang univ sch...
  • 1 篇 daegu gyeongbuk ...
  • 1 篇 beihang univ fer...
  • 1 篇 penn state univ ...
  • 1 篇 university of sc...
  • 1 篇 southeast univ s...

作者

  • 4 篇 zhan xuepeng
  • 4 篇 liu jing
  • 4 篇 chen jiezhi
  • 4 篇 wu jixuan
  • 4 篇 huang ru
  • 4 篇 feng yang
  • 3 篇 zhang youguang
  • 3 篇 wang jinkai
  • 3 篇 wang chengcheng
  • 3 篇 zhang junyu
  • 3 篇 qi yueran
  • 3 篇 si xin
  • 3 篇 sun zhaohui
  • 3 篇 zhang yue
  • 3 篇 wu huaqiang
  • 3 篇 zhang qingtian
  • 2 篇 huang qianqian
  • 2 篇 wang hongyu
  • 2 篇 motaman seyedham...
  • 2 篇 raghunathan anan...

语言

  • 64 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=computing in memory"
66 条 记 录,以下是51-60 订阅
排序:
The Challenges and Emerging Technologies for Low-Power Artificial Intelligence IoT Systems
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS 2021年 第12期68卷 4821-4834页
作者: Ye, Le Wang, Zhixuan Liu, Ying Chen, Peiyu Li, Heyi Zhang, Hao Wu, Meng He, Wei Shen, Linxiao Zhang, Yihan Tan, Zhichao Wang, Yangyuan Huang, Ru Peking Univ Inst Microelect Key Lab Microelect Devices & Circuits MOE Beijing 100871 Peoples R China Zhejiang Univ Coll Informat Sci & Elect Engn Hangzhou 310058 Peoples R China
The Internet of Things (IoT) is an interface with the physical world that usually operates in random-sparse-event (RSE) scenarios. This article discusses main challenges of IoT chips: power consumption, power supply, ... 详细信息
来源: 评论
A high charge-discharge stability SRAM 10T1C XOR CIM macro applied in BCAM and Hamming distance
收藏 引用
MICROELECTRONICS JOURNAL 2025年 161卷
作者: Liu, Li Hu, Wei Yang, Zhen Wei, Yiming Peng, Chunyu Wu, Xiulong Lin, Zhiting Lu, Wenjuan Zhou, Yongliang Chen, Junning Anhui Univ Sch Integrated Circuits Hefei 230601 Peoples R China Anhui High Performance Integrated Circuit Engn Res Hefei Peoples R China
With the rapid development of artificial intelligence, there has been an increasing demand for computing speed and power. At the same time, computing stability is also essential. We proposed a high charge-discharge st... 详细信息
来源: 评论
Using SRAM-based CIM Architecture as the Event Detector for AIoT Applications  8
Using SRAM-based CIM Architecture as the Event Detector for ...
收藏 引用
8th IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW) - Driving World to 5G and Beyond with Consumer Technology
作者: Lu, Chih-Cheng Sulaiman, Muhammad Bintang Gemintang Lin, Chin-Yu Li, Jian-Bai Shih, Cheng-Ming Rih, Wei-Shu Juang, Kai-Cheung Ind Technol Res Inst Zhudong Township Taiwan
Convolutional neural networks (CNNs) play a key role in deep learning applications. computing-in-memory (CIM) architecture has demonstrated great potential to effectively compute large-scale matrix-vector multiplicati... 详细信息
来源: 评论
SRAM-Based CIM Architecture Design for Event Detection
收藏 引用
SENSORS 2022年 第20期22卷 7854页
作者: Sulaiman, Muhammad Bintang Gemintang Lin, Jin-Yu Li, Jian-Bai Shih, Cheng-Ming Juang, Kai-Cheung Lu, Chih-Cheng Ind Technol Res Inst 195Sect 4Zhongxing Rd Hsinchu 310401 Taiwan
Convolutional neural networks (CNNs) play a key role in deep learning applications. However, the high computational complexity and high-energy consumption of CNNs trammel their application in hardware accelerators. Co... 详细信息
来源: 评论
Valley-Coupled-Spintronic Non-Volatile Memories With Compute-In-memory Support
收藏 引用
IEEE TRANSACTIONS ON NANOTECHNOLOGY 2020年 19卷 635-647页
作者: Thirumala, Sandeep Krishna Hung, Yi-Tse Jain, Shubham Raha, Arnab Thakuria, Niharika Raghunathan, Vijay Raghunathan, Anand Chen, Zhihong Gupta, Sumeet Purdue Univ Sch Elect & Comp Engn W Lafayette IN 47907 USA Purdue Univ Birck Nanotechnol Ctr W Lafayette IN 47907 USA IBM Thomas J Watson Res Yorktown Hts NY 10598 USA Intel Corp Santa Clara CA 95054 USA
In this work, we propose valley-coupled spin-hall memories based on monolayer WSe2. The key features of the proposed memories are (a) the ability to switch magnets with perpendicular magnetic anisotropy and (b) an int... 详细信息
来源: 评论
Reliability aspects of binary vector-matrix-multiplications using ReRAM devices
收藏 引用
NEUROMORPHIC computing AND ENGINEERING 2022年 第3期2卷 034001-034001页
作者: Bengel, Christopher Mohr, Johannes Wiefels, Stefan Singh, Abhairaj Gebregiorgis, Anteneh Bishnoi, Rajendra Hamdioui, Said Waser, Rainer Wouters, Dirk Menzel, Stephan Rhein Westfal Techn Hsch RWTH Aachen Univ Inst Mat Elect Engn & Informat Technol 2 Aachen Germany Rhein Westfal Techn Hsch RWTH Aachen Univ Julich Aachen Res Alliance JARA Fit Aachen Germany Forschungszentrum Julich Peter Grunberg Inst PGI 7 Julich Germany JARA FIT Julich Germany Delft Univ Technol Comp Engn Dept NL-2628 CD Delft Netherlands Forschungszentrum Julich Peter Grunberg Inst PGI 10 Julich Germany
Computation-in-memory using memristive devices is a promising approach to overcome the performance limitations of conventional computing architectures introduced by the von Neumann bottleneck which are also known as m... 详细信息
来源: 评论
Towards State-Aware Computation in ReRAM Neural Networks  57
Towards State-Aware Computation in ReRAM Neural Networks
收藏 引用
57th ACM/IEEE Design Automation Conference (DAC)
作者: He, Yintao Wang, Ying Zhao, Xiandong Li, Huawei Lit, Xiaowei Chinese Acad Sci Inst Comp Technol SKLCA Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China Peng Cheng Lab Shenzhen Peoples R China
Resistive RAM (ReRAM) is a promising device to realize the computing in memory (CiM) architecture, suitable for power-constrained IoT systems. Because of low leakage, the dot-production operations in ReRAM crossbars d... 详细信息
来源: 评论
Algorithm-Hardware Co-Optimization for Neural Network Efficiency Improvement
Algorithm-Hardware Co-Optimization for Neural Network Effici...
收藏 引用
作者: Yang, Qing Duke University
学位级别:Ph.D.
Deep neural networks (DNNs) are tremendously applied in the artificial intelligence field. While the performance of DNNs is continuously improved by more complicated and deeper structures, the feasibility of deploymen... 详细信息
来源: 评论
Recent Advances in Compute-in-memory Support for SRAM Using Monolithic 3-D Integration
收藏 引用
IEEE MICRO 2019年 第6期39卷 28-37页
作者: Zhang, Zhixiao Si, Xin Srinivasa, Srivatsa Ramanathan, Akshay Krishna Chang, Meng-Fan Natl Tsing Hua Univ Elect Engn Hsinchu Taiwan Fuzhou Univ Fuzhou Fujian Peoples R China Natl Tsing Hua Univ Hsinchu Taiwan Penn State Univ State Coll PA USA Penn State Univ Elect Engn State Coll PA USA
computing-in-memory (CiM) is a popular design alternative to overcome the von Neumann bottleneck and improve the performance of artificial intelligence computing applications. Monolithic three-dimensional (M3D) techno... 详细信息
来源: 评论
A 307-fps 351.7-GOPs/W Deep Learning FPGA Accelerator for Real-time Scene Text Recognition  18
A 307-fps 351.7-GOPs/W Deep Learning FPGA Accelerator for Re...
收藏 引用
International Conference on Field-Programmable Technology (ICFPT)
作者: Zhao, Shirui An, Fengwei Yu, Hao Southern Univ Sci & Technol Sch Microelect Shenzhen Peoples R China
FPGA-based deep learning accelerator has become important for high throughput and low power inference at edges. In this paper, we have developed a computing-in-memory (CIM) accelerator using the binary SegNet (BSEG) f... 详细信息
来源: 评论