咨询与建议

限定检索结果

文献类型

  • 38 篇 会议
  • 26 篇 期刊文献
  • 2 篇 学位论文

馆藏范围

  • 66 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 60 篇 工学
    • 41 篇 电气工程
    • 34 篇 计算机科学与技术...
    • 8 篇 材料科学与工程(可...
    • 8 篇 软件工程
    • 6 篇 仪器科学与技术
    • 5 篇 电子科学与技术(可...
    • 5 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 信息与通信工程
    • 1 篇 化学工程与技术
  • 12 篇 理学
    • 10 篇 物理学
    • 4 篇 化学
    • 1 篇 数学
    • 1 篇 生物学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...

主题

  • 66 篇 computing in mem...
  • 6 篇 rram
  • 5 篇 reram
  • 5 篇 non-volatile mem...
  • 3 篇 neural networks
  • 3 篇 neural network
  • 3 篇 artificial intel...
  • 3 篇 memristor
  • 3 篇 convolutional ne...
  • 2 篇 low power
  • 2 篇 reliability
  • 2 篇 von neumann bott...
  • 2 篇 computer archite...
  • 2 篇 hyperdimensional...
  • 2 篇 process variatio...
  • 2 篇 dnn accelerator
  • 2 篇 analog computing
  • 2 篇 flash memory
  • 2 篇 nor flash
  • 2 篇 machine learning

机构

  • 3 篇 natl tsing hua u...
  • 3 篇 beihang univ hef...
  • 3 篇 neumem co ltd pe...
  • 2 篇 shandong univ sc...
  • 2 篇 univ chinese aca...
  • 2 篇 univ calif irvin...
  • 2 篇 chinese acad sci...
  • 2 篇 peking univ sch ...
  • 2 篇 purdue univ sch ...
  • 2 篇 univ elect sci &...
  • 2 篇 beihang univ fer...
  • 2 篇 beijing adv inno...
  • 2 篇 peking univ sch ...
  • 2 篇 shandong univ sc...
  • 2 篇 beihang univ sch...
  • 1 篇 daegu gyeongbuk ...
  • 1 篇 beihang univ fer...
  • 1 篇 penn state univ ...
  • 1 篇 university of sc...
  • 1 篇 southeast univ s...

作者

  • 4 篇 zhan xuepeng
  • 4 篇 liu jing
  • 4 篇 chen jiezhi
  • 4 篇 wu jixuan
  • 4 篇 huang ru
  • 4 篇 feng yang
  • 3 篇 zhang youguang
  • 3 篇 wang jinkai
  • 3 篇 wang chengcheng
  • 3 篇 zhang junyu
  • 3 篇 qi yueran
  • 3 篇 si xin
  • 3 篇 sun zhaohui
  • 3 篇 zhang yue
  • 3 篇 wu huaqiang
  • 3 篇 zhang qingtian
  • 2 篇 huang qianqian
  • 2 篇 wang hongyu
  • 2 篇 motaman seyedham...
  • 2 篇 raghunathan anan...

语言

  • 64 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=computing in memory"
66 条 记 录,以下是61-70 订阅
排序:
Improving model robustness to weight noise via consistency regularization
收藏 引用
MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2024年 第3期5卷 035065页
作者: Hou, Yaoqi Zhang, Qingtian Wang, Namin Wu, Huaqiang Beijing Adv Innovat Ctr Integrated Circuits Beijing Peoples R China Tsinghua Univ Sch Integrated Circuits Beijing Peoples R China
As an emerging computing architecture, the computing-in-memory (CIM) exhibits significant potential for energy efficiency and computing power in artificial intelligence applications. However, the intrinsic non-idealit... 详细信息
来源: 评论
A Study on the Channel Holes' Diameter Effects of High-Performance Vertical-Channel Flash memory Cells
收藏 引用
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY 2024年 第10期13卷
作者: Yan, Zijin Zhu, Huilong Yang, Hong Li, Junjie Lu, Shunshun Zhang, Chenchen Yang, Shuai Bai, Tianyu Zhao, Kaiqiang Xiang, Liang Zhang, Yongkui Li, Junfeng Luo, Jun Ye, T. C. Chinese Acad Sci Inst Microelect Integrated Circuit Adv Proc R&D Ctr Beijing 100029 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China
High-performance vertical-channel flash (HVF) memory cells were fabricated on the single crystalline Si (c-Si) sidewalls of the cylindrical deep wells in c-Si substrate. To investigate the diameter effects of the cyli... 详细信息
来源: 评论
SRAM-Based CIM Architecture Design for Event Detection
收藏 引用
SENSORS 2022年 第20期22卷 7854页
作者: Sulaiman, Muhammad Bintang Gemintang Lin, Jin-Yu Li, Jian-Bai Shih, Cheng-Ming Juang, Kai-Cheung Lu, Chih-Cheng Ind Technol Res Inst 195Sect 4Zhongxing Rd Hsinchu 310401 Taiwan
Convolutional neural networks (CNNs) play a key role in deep learning applications. However, the high computational complexity and high-energy consumption of CNNs trammel their application in hardware accelerators. Co... 详细信息
来源: 评论
CINT -- An Energy-efficient Mixed-signal In-memory CNN Accelerator Based on NOR Flash memory (poster)  19
CINT -- An Energy-efficient Mixed-signal In-Memory CNN Accel...
收藏 引用
Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services
作者: Linfeng Tao Rui Xu Teng Tian Zikun Xiang Yifei Li Xi Jin Jun Ren Zhengda Li Chenxia Li University of Science and Technology of China Hefei China Zbit Semi Inc. Hefei China
Convolutional neural network (CNN) is a power-hungry and resource-consuming application, which makes it hard to deploy on end devices. We propose a method to perform convolution operations in NOR flash memory. Experim... 详细信息
来源: 评论
Deep Neural Network accelerator with Spintronic memory  20
Deep Neural Network accelerator with Spintronic Memory
收藏 引用
Proceedings of the 2020 on Great Lakes Symposium on VLSI
作者: He Zhang Wang Kang Youguang Zhang Weisheng Zhao Beihang University Beijing China
Utilizing emerging nonvolatile memories to accelerate deep neural network (DNN) has been considered as one of the promising approaches to solve the bottleneck of data transfer during the multiplication and accumulatio... 详细信息
来源: 评论
Reliability aspects of binary vector-matrix-multiplications using ReRAM devices
收藏 引用
NEUROMORPHIC computing AND ENGINEERING 2022年 第3期2卷 034001-034001页
作者: Bengel, Christopher Mohr, Johannes Wiefels, Stefan Singh, Abhairaj Gebregiorgis, Anteneh Bishnoi, Rajendra Hamdioui, Said Waser, Rainer Wouters, Dirk Menzel, Stephan Rhein Westfal Techn Hsch RWTH Aachen Univ Inst Mat Elect Engn & Informat Technol 2 Aachen Germany Rhein Westfal Techn Hsch RWTH Aachen Univ Julich Aachen Res Alliance JARA Fit Aachen Germany Forschungszentrum Julich Peter Grunberg Inst PGI 7 Julich Germany JARA FIT Julich Germany Delft Univ Technol Comp Engn Dept NL-2628 CD Delft Netherlands Forschungszentrum Julich Peter Grunberg Inst PGI 10 Julich Germany
Computation-in-memory using memristive devices is a promising approach to overcome the performance limitations of conventional computing architectures introduced by the von Neumann bottleneck which are also known as m... 详细信息
来源: 评论