咨询与建议

限定检索结果

文献类型

  • 123 篇 期刊文献
  • 42 篇 会议

馆藏范围

  • 165 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 160 篇 工学
    • 131 篇 计算机科学与技术...
    • 25 篇 电气工程
    • 22 篇 控制科学与工程
    • 16 篇 软件工程
    • 9 篇 信息与通信工程
    • 6 篇 动力工程及工程热...
    • 5 篇 机械工程
    • 5 篇 土木工程
    • 4 篇 交通运输工程
    • 3 篇 化学工程与技术
    • 3 篇 石油与天然气工程
    • 2 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 船舶与海洋工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
    • 1 篇 网络空间安全
  • 44 篇 管理学
    • 44 篇 管理科学与工程(可...
  • 13 篇 理学
    • 7 篇 数学
    • 3 篇 化学
    • 3 篇 生物学
    • 1 篇 物理学
    • 1 篇 海洋科学
    • 1 篇 系统科学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 165 篇 constrained mult...
  • 47 篇 evolutionary alg...
  • 9 篇 evolutionary alg...
  • 8 篇 constraint handl...
  • 7 篇 differential evo...
  • 6 篇 convergence
  • 6 篇 optimization
  • 5 篇 constraint handl...
  • 5 篇 knowledge transf...
  • 5 篇 two-stage
  • 5 篇 two-stage framew...
  • 5 篇 decomposition
  • 4 篇 co-evolution
  • 4 篇 constraint-handl...
  • 4 篇 dual-population
  • 4 篇 constraint handl...
  • 4 篇 evolutionary com...
  • 3 篇 competitive swar...
  • 3 篇 multi-objective ...
  • 3 篇 task analysis

机构

  • 10 篇 china univ geosc...
  • 6 篇 northeastern uni...
  • 5 篇 xiamen univ tech...
  • 5 篇 tsinghua univ de...
  • 4 篇 china univ min &...
  • 4 篇 de montfort univ...
  • 3 篇 ningbo univ fac ...
  • 3 篇 lanzhou univ tec...
  • 3 篇 northeastern uni...
  • 3 篇 northeastern uni...
  • 3 篇 shantou univ dep...
  • 3 篇 nanjing univ aer...
  • 3 篇 china univ min &...
  • 3 篇 south china agr ...
  • 3 篇 guangdong univ t...
  • 2 篇 guangdong univ t...
  • 2 篇 guangdong univ t...
  • 2 篇 lanzhou univ tec...
  • 2 篇 wuhan univ sch c...
  • 2 篇 mit dept mech en...

作者

  • 9 篇 yang yongkuan
  • 8 篇 gong wenyin
  • 8 篇 liu jianchang
  • 8 篇 ming fei
  • 7 篇 zou juan
  • 7 篇 tan shubin
  • 6 篇 yang shengxiang
  • 6 篇 li wenji
  • 6 篇 fan zhun
  • 6 篇 zheng jinhua
  • 5 篇 gong dunwei
  • 5 篇 peng chaoda
  • 5 篇 wang ling
  • 4 篇 zhang jianlin
  • 4 篇 chen zuohan
  • 4 篇 wang honghai
  • 4 篇 cao jie
  • 4 篇 zhang wei
  • 3 篇 liu yuanchao
  • 3 篇 wang yan

语言

  • 161 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"主题词=constrained multi-objective optimization"
165 条 记 录,以下是61-70 订阅
排序:
A novel multi-population evolutionary algorithm based on hybrid collaboration for constrained multi-objective optimization
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2024年 87卷
作者: Wang, Qiuzhen Li, Yanhong Hou, Zhanglu Zou, Juan Zheng, Jinhua Xiangtan Univ Sch Comp Sci Key Lab Intelligent Comp & Informat Proc Minist Educ Xiangtan Hunan Peoples R China Xiangtan Univ Sch Cyberspace Sci Xiangtan Hunan Peoples R China Xiangtan Univ Fac Sch Comp Sci Xiangtan 411105 Peoples R China
multi -population -based methods are widely employed for solving constrained multiobjective optimization problems (CMOPs). The population collaboration strategy is a critical part of multi -population algorithms, and ... 详细信息
来源: 评论
Adaptive Truncation technique for constrained multi-objective optimization
收藏 引用
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS 2019年 第11期13卷 5489-5511页
作者: Zhang, Lei Bi, Xiaojun Wang, Yanjiao Yangtze Univ Sch Elect & Informat Jingzhou 434000 Peoples R China Harbin Engn Univ Sch Informat & Commun Engn Harbin 150000 Heilongjiang Peoples R China Northeast Elect Power Univ Sch Informat Engn Jilin 132000 Jilin Peoples R China
The performance of evolutionary algorithms can be seriously weakened when constraints limit the feasible region of the search space. In this paper we present a constrained multi-objective optimization algorithm based ... 详细信息
来源: 评论
Global and local feasible solution search for solving constrained multi-objective optimization
收藏 引用
INFORMATION SCIENCES 2023年 649卷
作者: Huang, Weixiong Zou, Juan Liu, Yuan Yang, Shengxiang Zheng, Jinhua Xiangtan Univ Key Lab Hunan Prov Internet Things & Informat Secu Xiangtan 411105 Peoples R China Xiangtan Univ Key Lab Intelligent Comp & Informat Proc Minist Educ Xiangtan 411105 Peoples R China Xiangtan Univ Sch Comp Sci Xiangtan 411105 Peoples R China Univ Xiangtan Sch Cyberspace Sci Xiangtan 411105 Peoples R China De Montfort Univ Sch Comp Sci & Informat Leicester LE1 9BH England
constrained multi-objective optimization problems (CMOPs) are challenging due to the complexity of feasible regions caused by constraints, especially when facing small feasible ranges, multiple feasible regions, and c... 详细信息
来源: 评论
A constrained multi-objective optimization algorithm based on coordinated strategy of archive and weight vectors
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 244卷
作者: Gu, Qinghua Liu, Ruchang Hui, Zegang Wang, Dan Xian Univ Architecture & Technol Sch Management Xian 710055 Shaanxi Peoples R China Xian Univ Architecture & Technol Xian Key Lab Intelligent Ind Percept Calculat & De Xian 710055 Peoples R China Xian Univ Architecture & Technol Sch Resources Engn Xian 710055 Shaanxi Peoples R China James Madison Univ Integrated Sci & Technol Harrisonburg VA 22807 USA
When dealing with constrained multi-objective optimization Problems (CMOPs) and struggling to enhance feasibility, convergence and diversity, the researchers of constrained multi-objective optimization Evolutionary Al... 详细信息
来源: 评论
Adaptively Allocating Constraint-Handling Techniques for constrained multi-objective optimization Problems
收藏 引用
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE 2021年 第8期35卷 2159032-2159032页
作者: Yang, Ning Liu, Hai-Lin Guangdong Univ Technol Sch Automat Guangzhou Peoples R China Guangdong Univ Technol Sch Appl Math Guangzhou Peoples R China
For solving constrained multi-objective optimization problems (CMOPs), an effective constraint-handling technique (CHT) is of great importance. Recently, many CHTs have been proposed for solving CMOPs. However, no sin... 详细信息
来源: 评论
Two-stage differential evolution with dynamic population assignment for constrained multi-objective optimization
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2024年 90卷
作者: Xu, Bin Zhang, Haifeng Tao, Lili Shanghai Univ Engn Sci Sch Mech & Automot Engn Shanghai 201620 Peoples R China Shanghai Polytech Univ Sch Intelligent Mfg & Control Engn Shanghai 201209 Peoples R China
Using infeasible information to balance objective optimization and constraint satisfaction is a very promising research direction to address constrained multi-objective problems (CMOPs) via evolutionary algorithms (EA... 详细信息
来源: 评论
A tri-population based co-evolutionary framework for constrained multi-objective optimization problems
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2022年 第0期70卷 101055-101055页
作者: Ming, Fei Gong, Wenyin Wang, Ling Lu, Chao China Univ Geosci Sch Comp Sci Wuhan 430074 Peoples R China Tsinghua Univ Dept Automat Beijing 100084 Peoples R China
Balancing between the optimization of objective functions and constraint satisfaction is essential to handle constrained multi-objective optimization problems (CMOPs). Recently, various methods have been presented to ... 详细信息
来源: 评论
A dual-population evolutionary algorithm based on adaptive constraint strength for constrained multi-objective optimization
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2023年 77卷
作者: Yang, Kaixi Zheng, Jinhua Zou, Juan Yu, Fan Yang, Shengxiang Xiangtan Univ Engn Res Ctr Intelligent Syst Optimizat & Secur Xiangtan 411105 Hunan Peoples R China Xiangtan Univ Key Lab Intelligent Comp & Informat Proc Minist Educ China Xiangtan 411105 Hunan Peoples R China Xiangtan Univ Key Lab Hunan Prov Internet Things & Informat Secu Xiangtan 411105 Hunan Peoples R China De Montfort Univ Sch Comp Sci & Informat Leicester LE1 9BH England
It is challenging to balance convergence and diversity while fully satisfying feasibility when dealing with constrained multi-objective optimization problems (CMOPs). Overemphasizing the feasibility optimization of co... 详细信息
来源: 评论
A niche-based evolutionary algorithm with dual cooperative archive for solving constrained multi-objective optimization problems
收藏 引用
EGYPTIAN INFORMATICS JOURNAL 2024年 25卷
作者: Guo, Fengyu Li, Hecheng Qinghai Normal Univ Sch Comp Sci & Technol Xining 810016 Peoples R China Qinghai Normal Univ Sch Math & Stat Xining 810016 Peoples R China
constrained multi-objective optimization problems (CMOPs) are commonly encountered in engineering practice. The key to effectively solving these problems lies in achieving a timely balance between convergence, diversi... 详细信息
来源: 评论
An adaptive co-evolutionary competitive particle swarm optimizer for constrained multi-objective optimization problems
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2024年 91卷
作者: Meng, Xiaoding Li, Hecheng Qinghai Normal Univ Sch Comp Sci & Technol Xining 810008 Peoples R China Qinghai Normal Univ Sch Math & Stat Xining 810008 Qinghai Peoples R China
In constrained multi-objective optimization problems, it is challenging to balance the convergence, diversity and feasibility of the population, especially encountering complex infeasible regions. In order to effectiv... 详细信息
来源: 评论