咨询与建议

限定检索结果

文献类型

  • 86 篇 期刊文献
  • 18 篇 会议

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 97 篇 工学
    • 90 篇 计算机科学与技术...
    • 50 篇 电气工程
    • 19 篇 控制科学与工程
    • 4 篇 信息与通信工程
    • 2 篇 机械工程
    • 2 篇 光学工程
    • 2 篇 软件工程
    • 1 篇 测绘科学与技术
    • 1 篇 交通运输工程
  • 19 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 15 篇 理学
    • 9 篇 数学
    • 2 篇 物理学
    • 2 篇 生物学
    • 1 篇 地球物理学
    • 1 篇 统计学(可授理学、...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 104 篇 constrained mult...
  • 32 篇 evolutionary alg...
  • 23 篇 optimization
  • 17 篇 sociology
  • 16 篇 statistics
  • 16 篇 evolutionary com...
  • 15 篇 convergence
  • 10 篇 task analysis
  • 9 篇 constraint handl...
  • 6 篇 linear programmi...
  • 6 篇 search problems
  • 5 篇 differential evo...
  • 5 篇 pareto optimizat...
  • 4 篇 knowledge transf...
  • 4 篇 evolutionary alg...
  • 4 篇 multitasking
  • 4 篇 decomposition
  • 3 篇 multiobjective e...
  • 3 篇 constraint handl...
  • 3 篇 autonomous aeria...

机构

  • 9 篇 zhengzhou univ s...
  • 8 篇 zhongyuan univ t...
  • 5 篇 zhengzhou univ s...
  • 5 篇 henan inst techn...
  • 4 篇 zhongyuan univ t...
  • 4 篇 cent south univ ...
  • 4 篇 tsinghua univ de...
  • 4 篇 qatar univ coll ...
  • 3 篇 cent south univ ...
  • 3 篇 china univ geosc...
  • 3 篇 shenzhen univ co...
  • 2 篇 chongqing univ s...
  • 2 篇 hong kong polyte...
  • 2 篇 south china univ...
  • 2 篇 hangzhou hualan ...
  • 2 篇 sun yat sen univ...
  • 2 篇 hangzhou dianzi ...
  • 2 篇 southern univ sc...
  • 2 篇 osaka prefecture...
  • 2 篇 sun yat sen univ...

作者

  • 14 篇 yu kunjie
  • 14 篇 liang jing
  • 12 篇 qiao kangjia
  • 12 篇 qu boyang
  • 9 篇 yue caitong
  • 5 篇 filipic bogdan
  • 5 篇 zhou jinlong
  • 4 篇 peng chaoda
  • 4 篇 yu fan
  • 4 篇 wang ling
  • 4 篇 ma zhongwei
  • 3 篇 zou juan
  • 3 篇 tusar tea
  • 3 篇 chen qun
  • 3 篇 ban xuanxuan
  • 3 篇 tan kay chen
  • 3 篇 vodopija aljosa
  • 3 篇 wang jiahai
  • 3 篇 yen gary g.
  • 3 篇 wang yong

语言

  • 104 篇 英文
检索条件"主题词=constrained multiobjective optimization"
104 条 记 录,以下是1-10 订阅
排序:
constrained multiobjective optimization With Escape and Expansion Forces
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2025年 第1期29卷 2-15页
作者: Liu, Zhi-Zhong Wu, Fan Liu, Juan Qin, Yunchuan Li, Kenli Hunan Univ Coll Informat Sci & Elect Engn Changsha 410082 Peoples R China
Constraints may scatter the Pareto optimal solutions of a constrained multiobjective optimization problem (CMOP) into multiple feasible regions. To avoid getting trapped in local optimal feasible regions or a part of ... 详细信息
来源: 评论
An individual adaptive evolution and regional collaboration based evolutionary algorithm for large-scale constrained multiobjective optimization problems
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2025年 95卷
作者: Yu, Kunjie Yang, Zhenyu Liang, Jing Qiao, Kangjia Qu, Boyang Suganthan, Ponnuthurai Nagaratnam Longmen Lab Luoyang 471000 Peoples R China Zhengzhou Univ Sch Elect & Informat Engn Zhengzhou 450001 Peoples R China Henan Inst Technol Sch Elect Engn & Automat Xinxiang 453003 Peoples R China Zhongyuan Univ Technol Sch Elect & Informat Zhengzhou 450007 Peoples R China Qatar Univ Coll Engn KINDI Ctr Comp Res Doha Qatar
Large-scale constrained multiobjective optimization problems (LSCMOPs) refer to constrained multiobjective optimization problems (CMOPs) with large-scale decision variables. When using evolutionary algorithms to solve... 详细信息
来源: 评论
Decoupling Constraint: Task Clone-Based Multitasking optimization for constrained multiobjective optimization
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2025年 第2期29卷 404-417页
作者: Li, Genghui Wang, Zhenkun Gao, Weifeng Wang, Ling Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China Southern Univ Sci & Technol Sch Syst Design & Intelligent Mfg Shenzhen 518055 Peoples R China Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen 518055 Peoples R China Xidian Univ Sch Math & Stat Xian 710126 Peoples R China Tsinghua Univ Dept Automat Beijing 100084 Peoples R China
The coupling of multiple constraints can pose difficulties in solving constrained multiobjective optimization problems (CMOPs). Existing constrained multiobjective evolutionary algorithms (CMOEAs) often overlook this ... 详细信息
来源: 评论
A Tractive Population-Assisted Dual-Population and Two-Phase Evolutionary Algorithm for constrained multiobjective optimization
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2025年 第1期29卷 31-45页
作者: Xie, Shumin Li, Kangshun Wang, Wenxiang Wang, Hui Peng, Chaoda Jalil, Hassan South China Agr Univ Coll Math & Informat Guangzhou 510642 Peoples R China Shenzhen Inst Informat Technol Sch Software Engn Shenzhen 518172 Peoples R China
Both dual-population and two-phase strategies are effective for utilizing infeasible solution information and significantly enhancing the ability of algorithms to solve constrained multiobjective optimization problems... 详细信息
来源: 评论
A Bayesian optimization Approach to Algorithm Parameter Tuning in constrained multiobjective optimization  7th
A Bayesian Optimization Approach to Algorithm Parameter Tuni...
收藏 引用
7th International Conference on optimization and Learning
作者: Cork, Jordan N. Filipic, Bogdan Jozef Stefan Inst Jamova Cesta 39 Ljubljana 1000 Slovenia Jozef Stefan Int Postgrad Sch Jamova Cesta 39 Ljubljana 1000 Slovenia
Algorithm parameter tuning is an often neglected step in the optimization process. This study shows that constrained multiobjective optimization can benefit significantly from tuning, in both the specialized (for an i... 详细信息
来源: 评论
Deep reinforcement learning-guided coevolutionary algorithm for constrained multiobjective optimization
收藏 引用
INFORMATION SCIENCES 2025年 692卷
作者: Luo, Wenguan Yu, Xiaobing Yen, Gary G. Wei, Yifan Nanjing Univ Informat Sci & Technol Sch Management Sci & Engn Nanjing Peoples R China Natl Univ Def Technol Coll Syst Engn Changsha Peoples R China Oklahoma State Univ Sch Elect & Comp Engn Stillwater OK 74078 USA
Effectively managing convergence, diversity, and feasibility constitutes a fundamental trinity of tasks in optimizing constrained multiobjective optimization problems (CMOPs). Nevertheless, contemporary constrained mu... 详细信息
来源: 评论
A Pareto Front searching algorithm based on reinforcement learning for constrained multiobjective optimization
收藏 引用
INFORMATION SCIENCES 2025年 705卷
作者: Hu, Yuhang Qu, Yuelin Li, Wei Huang, Ying JiangXi Univ Sci & Technol Sch Informat Engn Ganzhou 341000 Peoples R China Gannan Normal Univ Sch Math & Comp Sci Ganzhou 341000 Peoples R China
Constraint multiobjective algorithms are the most widely applied direction in intelligent optimization, with excellent research value. Currently, most multiobjective multi-constraints algorithms are designed based on ... 详细信息
来源: 评论
Promising boundaries explore and resource allocation evolutionary algorithm for constrained multiobjective optimization
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2025年 92卷
作者: Qu, Yuelin Hu, Yuhang Li, Wei Huang, Ying JiangXi Univ Sci & Technol Sch Informat Engn Ganzhou 341000 Peoples R China Gannan Normal Univ Sch Math & Comp Sci Ganzhou 341000 Peoples R China
constrained multiobjective optimization problems (CMOPs) typically present numerous local optima, which can be deceptive. Current constrained multiobjective algorithms (CMOEAs) encounter challenges in maintaining dive... 详细信息
来源: 评论
Dual-stage dual-population diversity maintenance for global and local exploration of constrained multiobjective optimization
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 268卷
作者: He, Zhao Liu, Hui Cent South Univ Inst Artificial Intelligence & Robot IAIR Sch Traff & Transportat Engn Key Lab Traff Safety TrackMinist Educ Changsha 410075 Hunan Peoples R China
In the field of constrained multiobjective optimization, some constrained multiobjective optimization problems (CMOPs) have large infeasible regions and discrete small feasible regions. Solutions to these problems are... 详细信息
来源: 评论
A two-stage coevolutionary algorithm based on adaptive weights for complex constrained multiobjective optimization
收藏 引用
APPLIED SOFT COMPUTING 2025年 173卷
作者: Li, Guangpeng Li, Li Cai, Guoyong Guilin Univ Elect Technol Guangxi Key Lab Trusted Software Guilin 541004 Peoples R China
In the constrained multiobjective optimization problems (CMOPs), various complex constraints need to be satisfied simultaneously, which further challenges evolutionary algorithms in balancing feasibility, convergence ... 详细信息
来源: 评论