咨询与建议

限定检索结果

文献类型

  • 86 篇 期刊文献
  • 18 篇 会议

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 97 篇 工学
    • 90 篇 计算机科学与技术...
    • 50 篇 电气工程
    • 19 篇 控制科学与工程
    • 4 篇 信息与通信工程
    • 2 篇 机械工程
    • 2 篇 光学工程
    • 2 篇 软件工程
    • 1 篇 测绘科学与技术
    • 1 篇 交通运输工程
  • 19 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 15 篇 理学
    • 9 篇 数学
    • 2 篇 物理学
    • 2 篇 生物学
    • 1 篇 地球物理学
    • 1 篇 统计学(可授理学、...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 104 篇 constrained mult...
  • 32 篇 evolutionary alg...
  • 23 篇 optimization
  • 17 篇 sociology
  • 16 篇 statistics
  • 16 篇 evolutionary com...
  • 15 篇 convergence
  • 10 篇 task analysis
  • 9 篇 constraint handl...
  • 6 篇 linear programmi...
  • 6 篇 search problems
  • 5 篇 differential evo...
  • 5 篇 pareto optimizat...
  • 4 篇 knowledge transf...
  • 4 篇 evolutionary alg...
  • 4 篇 multitasking
  • 4 篇 decomposition
  • 3 篇 multiobjective e...
  • 3 篇 constraint handl...
  • 3 篇 autonomous aeria...

机构

  • 9 篇 zhengzhou univ s...
  • 8 篇 zhongyuan univ t...
  • 5 篇 zhengzhou univ s...
  • 5 篇 henan inst techn...
  • 4 篇 zhongyuan univ t...
  • 4 篇 cent south univ ...
  • 4 篇 tsinghua univ de...
  • 4 篇 qatar univ coll ...
  • 3 篇 cent south univ ...
  • 3 篇 china univ geosc...
  • 3 篇 shenzhen univ co...
  • 2 篇 chongqing univ s...
  • 2 篇 hong kong polyte...
  • 2 篇 south china univ...
  • 2 篇 hangzhou hualan ...
  • 2 篇 sun yat sen univ...
  • 2 篇 hangzhou dianzi ...
  • 2 篇 southern univ sc...
  • 2 篇 osaka prefecture...
  • 2 篇 sun yat sen univ...

作者

  • 14 篇 yu kunjie
  • 14 篇 liang jing
  • 12 篇 qiao kangjia
  • 12 篇 qu boyang
  • 9 篇 yue caitong
  • 5 篇 filipic bogdan
  • 5 篇 zhou jinlong
  • 4 篇 peng chaoda
  • 4 篇 yu fan
  • 4 篇 wang ling
  • 4 篇 ma zhongwei
  • 3 篇 zou juan
  • 3 篇 tusar tea
  • 3 篇 chen qun
  • 3 篇 ban xuanxuan
  • 3 篇 tan kay chen
  • 3 篇 vodopija aljosa
  • 3 篇 wang jiahai
  • 3 篇 yen gary g.
  • 3 篇 wang yong

语言

  • 104 篇 英文
检索条件"主题词=constrained multiobjective optimization"
104 条 记 录,以下是41-50 订阅
排序:
Dual-Grid Model of MOEA/D for Evolutionary constrained multiobjective optimization  18
Dual-Grid Model of MOEA/D for Evolutionary Constrained Multi...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Ishibuchi, Hisao Fukase, Takefumi Masuyama, Naoki Nojima, Yusuke Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen Key Lab Computat Intelligence Shenzhen 518055 Peoples R China Osaka Prefecture Univ Grad Sch Engn Dept Comp Sci & Intelligent Syst Sakai Osaka 5998531 Japan
A promising idea for evolutionary constrained optimization is to efficiently utilize not only feasible solutions (feasible individuals) but also infeasible ones. In this paper, we propose a simple implementation of th... 详细信息
来源: 评论
Differential Evolution with the Adaptive Penalty Method for constrained multiobjective optimization
Differential Evolution with the Adaptive Penalty Method for ...
收藏 引用
IEEE Congress on Evolutionary Computation
作者: Vargas, Denis E. C. Lemonge, Afonso C. C. Barbosa, Helio J. C. Bernardino, Heder S. Univ Fed Juiz de Fora Juiz de Fora MG Brazil
A differential evolution algorithm is proposed here to solve constrained multiobjective optimization problems (CMOPs). In this paper, an Adaptive Penalty Method (APM), which was successfully applied to solve single ob... 详细信息
来源: 评论
Enhancing Algorithm Performance Prediction in constrained multiobjective optimization Using Additional Training Problems
Enhancing Algorithm Performance Prediction in Constrained Mu...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Andova, Andrejaana Cork, Jordan N. Tusar, Tea Filipic, Bogdan Jozef Stefan Inst Jozef Stefan Int Postgrad Sch Ljubljana Slovenia
A research problem studied extensively in recent years is the prediction of optimization algorithm performance. A common approach is using the landscape features of optimization problems to train machine learning mode... 详细信息
来源: 评论
Dynamic Landscape Analysis for constrained multiobjective optimization Problems  36th
Dynamic Landscape Analysis for Constrained Multiobjective Op...
收藏 引用
36th Australasian Joint Conference on Artificial Intelligence (AI)
作者: Alsouly, Hanan Kirley, Michael Munoz, Mario Andres Univ Melbourne Sch Comp & Informat Syst Melbourne Vic Australia ARC Ctr Optimisat Technol Integrated Methodol & A Melbourne Vic Australia Imam Mohammad Ibn Saud Islamic Univ Coll Comp & Informat Sci Riyadh Saudi Arabia
Landscape analysis is a data-driven approach that involves sampling the search space of an optimization problem to generate a range of statistical features. These features serve to characterize the 'problem diffic... 详细信息
来源: 评论
Evolutionary Algorithm with Dynamic Population Size for constrained multiobjective optimization
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2022年 73卷
作者: Wang, Bing-Chuan Shui, Zhong-Yi Feng, Yun Ma, Zhongwei Cent South Univ Sch Automation Changsha 410083 Peoples R China Hunan Xiangjiang Artificial Intelligence Acad Changsha Peoples R China Hunan Univ Coll Elect & Informat Engn Changsha 410082 Peoples R China Hunan Univ Natl Res Ctr Robot Visual Percept & Control Techno Changsha 410082 Peoples R China
The core task of constrained multiobjective optimization is to achieve a tradeoff between exploration and exploitation as well as a tradeoff between constraints and objectives. We present an effective evolutionary alg... 详细信息
来源: 评论
Adaptive design of the magnetron injection gun using constrained multiobjective optimization
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2023年 83卷
作者: Wang, Pengbo Yang, Fan Li, Liang Chongqing Univ Sch Elect Engn Chongqing Peoples R China Huazhong Univ Sci & Technol Wuhan Natl High Magnet Field Ctr Wuhan Peoples R China
The design of the magnetron injection gun (MIG) is an inverse problem with implicit objective functions and complex constraints. The computer-aided design using an optimization algorithm is a promising method to impro... 详细信息
来源: 评论
Purpose-directed two-phase multiobjective differential evolution for constrained multiobjective optimization
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2021年 60卷
作者: Yu, Kunjie Liang, Jing Qu, Boyang Yue, Caitong Zhengzhou Univ Sch Elect Engn Zhengzhou 450001 Peoples R China Zhongyuan Univ Technol Sch Elect & Informat Engn Zhengzhou 450007 Peoples R China
When solving constrained multiobjective optimization problems by evolutionary algorithm, the key challenge is how to achieve the balance among convergence, diversity, and feasibility. To deal with this challenge, a pu... 详细信息
来源: 评论
Design and analysis of helper-problem-assisted evolutionary algorithm for constrained multiobjective optimization
收藏 引用
INFORMATION SCIENCES 2023年 第1期648卷
作者: Zhang, Yajie Tian, Ye Jiang, Hao Zhang, Xingyi Jin, Yaochu Anhui Univ Sch Comp Sci & Technol Hefei Peoples R China Anhui Univ Informat Mat & Intelligent Sensing Lab Anhui Prov Hefei Peoples R China Anhui Univ Inst Phys Sci & Informat Technol Hefei Peoples R China Anhui Univ Sch Artificial Intelligence Hefei Peoples R China Bielefeld Univ Fac Technol Bielefeld Germany
In recent years, solving constrained multiobjective optimization problems (CMOPs) by introducing simple helper problems has become a popular concept. To date, no systematic study has investigated the conditions under ... 详细信息
来源: 评论
Dual population approximate constrained Pareto front for constrained multiobjective optimization
收藏 引用
INFORMATION SCIENCES 2023年 第1期648卷
作者: Zhou, Jinlong Zhang, Yinggui Suganthan, P. N. Cent South Univ Sch Traff & Transport Engn Changsha 410075 Peoples R China Qatar Univ Coll Engn KINDI Ctr Comp Res Doha Qatar
For constrained multiobjective optimization problems (CMOPs), the ultimate goal is to obtain a set of well-converged and well-distributed feasible solutions to approximate the constrained Pareto front (CPF). Various c... 详细信息
来源: 评论
Interactive niching-based two-stage evolutionary algorithm for constrained multiobjective optimization
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2023年 83卷
作者: Liang, Jing Zhang, Leiyu Yu, Kunjie Qu, Boyang Shang, Fuxing Qiao, Kangjia Zhengzhou Univ Sch Elect & Informat Engn Zhengzhou 450001 Peoples R China Zhongyuan Univ Technol Sch Elect & Informat Zhengzhou 450007 Peoples R China Zhengzhou Univ Aeronaut Sch Humanity & Law Zhengzhou 450046 Peoples R China
When solving constrained multiobjective optimization problems (CMOPs), how to maintain diversity without losing convergence is a major challenge, because some small discrete feasible regions make the population hard t... 详细信息
来源: 评论