咨询与建议

限定检索结果

文献类型

  • 4 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 2 篇 电气工程
    • 2 篇 计算机科学与技术...
    • 1 篇 动力工程及工程热...
    • 1 篇 测绘科学与技术
    • 1 篇 石油与天然气工程
  • 1 篇 理学
    • 1 篇 地球物理学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 5 篇 contrastive dive...
  • 2 篇 feature extracti...
  • 1 篇 probabilistic mo...
  • 1 篇 fault diagnosis
  • 1 篇 adaptive deep be...
  • 1 篇 building energy ...
  • 1 篇 neural nets
  • 1 篇 implicit feedbac...
  • 1 篇 fault analysis
  • 1 篇 energy-consuming...
  • 1 篇 power engineerin...
  • 1 篇 time-frequency c...
  • 1 篇 fault-cause iden...
  • 1 篇 neural networks
  • 1 篇 improved cd algo...
  • 1 篇 restricted boltz...
  • 1 篇 deep belief netw...
  • 1 篇 recommender syst...
  • 1 篇 time-frequency a...
  • 1 篇 field data

机构

  • 1 篇 shandong jianzhu...
  • 1 篇 xi an jiao tong ...
  • 1 篇 xidian univ sch ...
  • 1 篇 chinese acad sci...
  • 1 篇 google mountain ...
  • 1 篇 suzhou hanlin in...
  • 1 篇 engn technol ass...
  • 1 篇 shanghai jiao to...
  • 1 篇 nanjing univ sci...

作者

  • 1 篇 zhang wenhua
  • 1 篇 liu yadong
  • 1 篇 lv yisheng
  • 1 篇 kang yanmei
  • 1 篇 yi jianqiang
  • 1 篇 liu fang
  • 1 篇 lu ying
  • 1 篇 ding zixiang
  • 1 篇 zhang guiqing
  • 1 篇 li chengdong
  • 1 篇 yang fan
  • 1 篇 liu jia
  • 1 篇 liang hanqing
  • 1 篇 qiao chen
  • 1 篇 fang hanfeng
  • 1 篇 shi yan
  • 1 篇 xiao liang
  • 1 篇 jiang xiuchen
  • 1 篇 yang lan
  • 1 篇 sheng gehao

语言

  • 5 篇 英文
检索条件"主题词=contrastive divergence algorithm"
5 条 记 录,以下是1-10 订阅
排序:
Fault-cause identification method based on adaptive deep belief network and time-frequency characteristics of travelling wave
收藏 引用
IET GENERATION TRANSMISSION & DISTRIBUTION 2019年 第5期13卷 724-732页
作者: Liang, Hanqing Liu, Yadong Sheng, Gehao Jiang, Xiuchen Shanghai Jiao Tong Univ Dept Elect Informat & Elect Engn Shanghai Peoples R China
Accurate fault-cause identification is highly important to the fault analysis of overhead transmission lines (OTLs). In order to improve the efficiency and accuracy of fault identification, this study proposes a fault... 详细信息
来源: 评论
Deep belief networks with self-adaptive sparsity
收藏 引用
APPLIED INTELLIGENCE 2022年 第1期52卷 237-253页
作者: Qiao, Chen Yang, Lan Shi, Yan Fang, Hanfeng Kang, Yanmei Xi An Jiao Tong Univ Xian 710049 Peoples R China Suzhou Hanlin Informat Technol Dev Co LTD Suzhou 215138 Peoples R China
To have the sparsity of deep neural networks is crucial, which can improve the learning ability of them, especially for application to high-dimensional data with small sample size. Commonly used regularization terms f... 详细信息
来源: 评论
Restricted Boltzmann Machines for Recommender Systems with Implicit Feedback
Restricted Boltzmann Machines for Recommender Systems with I...
收藏 引用
IEEE International Conference on Big Data (Big Data)
作者: Yang, Fan Lu, Ying Engn Technol Associates Inc Troy MI 48083 USA Google Mountain View CA USA
Implicit feedback such as video watch time is commonly seen in many internet products. Though recommender systems with explicit feedback have been abundantly researched, there are not many methods proposed for buildin... 详细信息
来源: 评论
A Probabilistic Model Based on Bipartite Convolutional Neural Network for Unsupervised Change Detection
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2022年 60卷 1页
作者: Liu, Jia Zhang, Wenhua Liu, Fang Xiao, Liang Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Peoples R China Xidian Univ Sch Artificial Intelligence Xian 710071 Peoples R China
This article presents a probabilistic model based on a bipartite convolutional architecture for unsupervised change detection. We aim to develop a robust change detection method that can adapt to different types of da... 详细信息
来源: 评论
Deep Belief Network Based Hybrid Model for Building Energy Consumption Prediction
收藏 引用
ENERGIES 2018年 第1期11卷 242页
作者: Li, Chengdong Ding, Zixiang Yi, Jianqiang Lv, Yisheng Zhang, Guiqing Shandong Jianzhu Univ Sch Informat & Elect Engn Jinan 250101 Shandong Peoples R China Chinese Acad Sci Inst Automat Beijing 100190 Peoples R China
To enhance the prediction performance for building energy consumption, this paper presents a modified deep belief network (DBN) based hybrid model. The proposed hybrid model combines the outputs from the DBN model wit... 详细信息
来源: 评论