咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 11 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8 篇 工学
    • 6 篇 计算机科学与技术...
    • 4 篇 控制科学与工程
    • 2 篇 电气工程
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 理学
    • 2 篇 数学
    • 1 篇 统计学(可授理学、...
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 公共管理

主题

  • 11 篇 convex and non-c...
  • 2 篇 graph sparsity
  • 2 篇 forward euler di...
  • 2 篇 differential equ...
  • 2 篇 first-order meth...
  • 2 篇 network flow opt...
  • 2 篇 adaptive algorit...
  • 1 篇 multi-objective ...
  • 1 篇 distributed opti...
  • 1 篇 sparse prior
  • 1 篇 adaptive method
  • 1 篇 ill-posed proble...
  • 1 篇 riemannian manif...
  • 1 篇 interference fun...
  • 1 篇 parallel and dis...
  • 1 篇 convolutional sp...
  • 1 篇 proximal point m...
  • 1 篇 near isometric e...
  • 1 篇 first-order meth...
  • 1 篇 dimensionality r...

机构

  • 1 篇 univ houston dep...
  • 1 篇 moscow antiplagi...
  • 1 篇 indian inst tech...
  • 1 篇 université aix-m...
  • 1 篇 univ aix marseil...
  • 1 篇 higher sch econ ...
  • 1 篇 univ trier dept ...
  • 1 篇 caltech dept ele...
  • 1 篇 institute of dat...
  • 1 篇 borealis ai on
  • 1 篇 inria grenoble r...
  • 1 篇 moscow inst phys...
  • 1 篇 mpi for intellig...
  • 1 篇 department of st...
  • 1 篇 univ calif berke...
  • 1 篇 google
  • 1 篇 weierstrass inst...
  • 1 篇 borealis ai mars...
  • 1 篇 univ texas el pa...
  • 1 篇 inst informat tr...

作者

  • 1 篇 kaplan a
  • 1 篇 bernhard schölko...
  • 1 篇 gazeau maxime
  • 1 篇 sheth kshiteej
  • 1 篇 julien mairal
  • 1 篇 lin ying
  • 1 篇 gasnikov alexand...
  • 1 篇 majeed bilal
  • 1 篇 dvinskikh darina
  • 1 篇 delgado rigobert...
  • 1 篇 peng guan-ju
  • 1 篇 yu bin
  • 1 篇 douik ahmed
  • 1 篇 kevin murphy
  • 1 篇 dvurechensky pav...
  • 1 篇 ogaltsov aleksan...
  • 1 篇 garg dinesh
  • 1 篇 li ang
  • 1 篇 spokoiny vladimi...
  • 1 篇 hassibi babak

语言

  • 10 篇 英文
  • 1 篇 其他
检索条件"主题词=convex and non-convex optimization"
11 条 记 录,以下是1-10 订阅
Low-Rank Riemannian optimization for Graph-Based Clustering Applications
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022年 第9期44卷 5133-5148页
作者: Douik, Ahmed Hassibi, Babak CALTECH Dept Elect Engn Pasadena CA 91125 USA
With the abundance of data, machine learning applications engaged increased attention in the last decade. An attractive approach to robustify the statistical analysis is to preprocess the data through clustering. This... 详细信息
来源: 评论
Forecasting the demand of mobile clinic services at vulnerable communities based on integrated multi-source data
收藏 引用
IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING 2021年 第2期11卷 113-127页
作者: Majeed, Bilal Peng, Jiming Li, Ang Lin, Ying Delgado, Rigoberto, I Univ Houston Dept Ind Engn Houston TX 77204 USA Univ Texas El Paso Coll Business Adm El Paso TX 79968 USA
Demand forecasting plays an important role in the deployment of mobile clinic services to vulnerable communities such as school zones and census tracts as it can help the service provider to maximize its coverage unde... 详细信息
来源: 评论
Learning the sparse prior: Modern approaches
收藏 引用
Wiley Interdisciplinary Reviews: Computational Statistics 2024年 第1期16卷 e1646-e1646页
作者: Peng, Guan-Ju Institute of Data Science and Information Computing National Chung Hsing University Taichung Taiwan
The sparse prior has been widely adopted to establish data models for numerous applications. In this context, most of them are based on one of three foundational paradigms: the conventional sparse representation, the ... 详细信息
来源: 评论
A General System of Differential Equations to Model First-Order Adaptive Algorithms
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2020年 第1期21卷 1-42页
作者: da Silva, Andre Belotto Gazeau, Maxime Univ Aix Marseille Ctr Math & Informat 39 Rue F Joliot Curie F-13013 Marseille France Borealis AI MaRS Heritage Bldg101 Coll StSuite 350 Toronto ON M5G 1L7 Canada
First-order optimization algorithms play a major role in large scale machine learning. A new class of methods, called adaptive algorithms, were recently introduced to adjust iteratively the learning rate for each coor... 详细信息
来源: 评论
On the line-search gradient methods for stochastic optimization  21st
On the line-search gradient methods for stochastic optimizat...
收藏 引用
21st IFAC World Congress on Automatic Control - Meeting Societal Challenges
作者: Dvinskikh, Darina Ogaltsov, Aleksandr Gasnikov, Alexander Dvurechensky, Pavel Spokoiny, Vladimir Moscow Antiplagiat Co Higher Sch Econ Moscow Russia Weierstrass Inst Appl Anal & Stochast Berlin Germany Moscow Inst Phys & Technol Dolgoprudnyi Russia Inst Informat Transmiss Problems RAS Moscow Russia Higher Sch Econ Moscow Russia
We consider several line-search based gradient methods for stochastic optimization: a gradient and accelerated gradient methods for convex optimization and gradient method for non-convex optimization. The methods simu... 详细信息
来源: 评论
Improved linear embeddings via Lagrange duality
收藏 引用
MACHINE LEARNING 2019年 第4期108卷 575-594页
作者: Sheth, Kshiteej Garg, Dinesh Dasgupta, Anirban Indian Inst Technol Gandhinagar 382355 Gujarat India
Near isometric orthogonal embeddings to lower dimensions are a fundamental tool in data science and machine learning. In this paper, we present the construction of such embeddings that minimizes the maximum distortion... 详细信息
来源: 评论
A general system of differential equations to model first-order adaptive algorithms
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 5072-5113页
作者: André Belotto Da Silva Maxime Gazeau Université Aix-Marseille Centre de Mathématiques et Informatique Marseille France Borealis AI Toronto ON
First-order optimization algorithms play a major role in large scale machine learning. A new class of methods, called adaptive algorithms, were recently introduced to adjust iteratively the learning rate for each coor... 详细信息
来源: 评论
Supervised Feature Selection in Graphs with Path Coding Penalties and Network Flows
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2013年 第8期14卷 2449-2485页
作者: Mairal, Julien Yu, Bin Univ Calif Berkeley Dept Stat Berkeley CA 94720 USA
We consider supervised learning problems where the features are embedded in a graph, such as gene expressions in a gene network. In this context, it is of much interest to automatically select a subgraph with few conn... 详细信息
来源: 评论
Supervised feature selection in graphs with path coding penalties and network flows
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2013年 第1期14卷
作者: Kevin Murphy Bernhard Schölkopf Julien Mairal Bin Yu Google MPI for Intelligent Systems INRIA Grenoble Rhône-Alpes France and Department of Statistics University of California Berkeley CA Department of Statistics University of California Berkeley CA and Department of Electrical Engineering & Computer Science
We consider supervised learning problems where the features are embedded in a graph, such as gene expressions in a gene network. In this context, it is of much interest to automatically select a subgraph with few conn... 详细信息
来源: 评论
Fast-Lipschitz optimization With Wireless Sensor Networks Applications
收藏 引用
IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2011年 第10期56卷 2319-2331页
作者: Fischione, Carlo KTH Royal Inst Technol Automat Control Lab ACCESS Linnaeus Ctr S-10044 Stockholm Sweden
Motivated by the need for fast computations in wireless sensor networks, the new F-Lipschitz optimization theory is introduced for a novel class of optimization problems. These problems are defined by simple qualifyin... 详细信息
来源: 评论