咨询与建议

限定检索结果

文献类型

  • 4 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 控制科学与工程
    • 1 篇 软件工程
  • 2 篇 理学
    • 2 篇 数学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 5 篇 convex composite...
  • 2 篇 accelerated prox...
  • 2 篇 bregman divergen...
  • 2 篇 noisy gradients
  • 2 篇 approximate prox...
  • 1 篇 submodularity
  • 1 篇 nonsmooth optimi...
  • 1 篇 structured spars...
  • 1 篇 sequential quadr...
  • 1 篇 high-dimensional...
  • 1 篇 integer and line...
  • 1 篇 error bound
  • 1 篇 proximal multipl...
  • 1 篇 convex relaxatio...
  • 1 篇 superlinear conv...
  • 1 篇 alternating dire...
  • 1 篇 &nbsp
  • 1 篇 fast nonergodic ...
  • 1 篇 proximal newton ...
  • 1 篇 lagrangian multi...

机构

  • 1 篇 purple mt labs p...
  • 1 篇 nanyang technol ...
  • 1 篇 hong kong baptis...
  • 1 篇 southeast univ s...
  • 1 篇 technion israel ...
  • 1 篇 school of cyber ...
  • 1 篇 school of comput...
  • 1 篇 tel aviv univ sc...
  • 1 篇 imperial coll lo...
  • 1 篇 ecole polytechni...
  • 1 篇 chinese univ hon...

作者

  • 1 篇 qiang zhou
  • 1 篇 so anthony man-c...
  • 1 篇 zhou qiang
  • 1 篇 pan sinno jialin
  • 1 篇 yue man-chung
  • 1 篇 sinno jialin pan
  • 1 篇 teboulle m. a. r...
  • 1 篇 sabach s. h. o. ...
  • 1 篇 marwa el halabi
  • 1 篇 zhou zirui

语言

  • 5 篇 英文
检索条件"主题词=convex composite minimization"
5 条 记 录,以下是1-10 订阅
排序:
On Acceleration for convex composite minimization with Noise-Corrupted Gradients and Approximate Proximal Mapping
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2022年 23卷
作者: Zhou, Qiang Pan, Sinno Jialin Southeast Univ Sch Cyber Sci & Engn Nanjing 211189 Jiangsu Peoples R China Purple Mt Labs Nanjing 211111 Jiangsu Peoples R China Nanyang Technol Univ Sch Comp Sci & Engn Singapore 639798 Singapore
The accelerated proximal methods (APM) have become one of the most important opti-mization tools for large-scale convex composite minimization problems, due to their wide range of applications and the optimal converge... 详细信息
来源: 评论
On acceleration for convex composite minimization with noise-corrupted gradients and approximate proximal mapping
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2022年 第1期23卷 10098-10156页
作者: Qiang Zhou Sinno Jialin Pan School of Cyber Science and Engineering Southeast University Nanjing Jiangsu China and Purple Mountain Laboratories Nanjing Jiangsu China School of Computer Science and Engineering Nanyang Technological University Singapore
The accelerated proximal methods (APM) have become one of the most important optimization tools for large-scale convex composite minimization problems, due to their wide range of applications and the optimal convergen... 详细信息
来源: 评论
A family of inexact SQA methods for non-smooth convex minimization with provable convergence guarantees based on the Luo-Tseng error bound property
收藏 引用
MATHEMATICAL PROGRAMMING 2019年 第1-2期174卷 327-358页
作者: Yue, Man-Chung Zhou, Zirui So, Anthony Man-Cho Imperial Coll London Imperial Coll Business Sch London England Hong Kong Baptist Univ Dept Math Kowloon Tong Kowloon Hong Kong Peoples R China Chinese Univ Hong Kong Dept Syst Engn & Engn Management Shatin Hong Kong Peoples R China
We propose a new family of inexact sequential quadratic approximation (SQA) methods, which we call the inexact regularized proximal Newton (IRPN) method, for minimizing the sum of two closed proper convex functions, o... 详细信息
来源: 评论
FASTER LAGRANGIAN-BASED METHODS IN convex OPTIMIZATION
收藏 引用
SIAM JOURNAL ON OPTIMIZATION 2022年 第1期32卷 204-227页
作者: SABACH, S. H. O. H. A. M. TEBOULLE, M. A. R. C. Technion Israel Inst Technol Fac Ind Engn & Management IL-32000 Haifa Israel Tel Aviv Univ Sch Math Sci IL-699788 Ramat Aviv Israel
In this paper, we aim at unifying, simplifying, and improving the convergence rate analysis of Lagrangian-based methods for convex optimization problems. We first introduce the notion of nice primal algorithmic map, w... 详细信息
来源: 评论
Learning with Structured Sparsity: From Discrete to convex and Back
Learning with Structured Sparsity: From Discrete to Convex a...
收藏 引用
作者: Marwa EL HALABI ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
学位级别:博士
In modern-data analysis applications, the abundance of data makes extracting meaningful infor- mation from it challenging, in terms of computation, storage, and interpretability. In this setting, exploiting sparsity i... 详细信息
来源: 评论