咨询与建议

限定检索结果

文献类型

  • 283 篇 期刊文献
  • 122 篇 会议
  • 3 篇 学位论文

馆藏范围

  • 408 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 374 篇 工学
    • 201 篇 计算机科学与技术...
    • 135 篇 电气工程
    • 46 篇 信息与通信工程
    • 33 篇 仪器科学与技术
    • 26 篇 控制科学与工程
    • 25 篇 生物医学工程(可授...
    • 21 篇 机械工程
    • 21 篇 软件工程
    • 19 篇 石油与天然气工程
    • 14 篇 测绘科学与技术
    • 13 篇 材料科学与工程(可...
    • 12 篇 环境科学与工程(可...
    • 11 篇 电子科学与技术(可...
    • 10 篇 土木工程
    • 8 篇 化学工程与技术
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 4 篇 建筑学
    • 4 篇 交通运输工程
    • 4 篇 船舶与海洋工程
  • 103 篇 理学
    • 38 篇 物理学
    • 30 篇 生物学
    • 17 篇 化学
    • 16 篇 地球物理学
    • 12 篇 数学
    • 4 篇 系统科学
  • 48 篇 医学
    • 26 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 10 篇 特种医学
  • 31 篇 管理学
    • 27 篇 管理科学与工程(可...
  • 8 篇 农学
  • 2 篇 法学
  • 2 篇 文学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 408 篇 convolutional au...
  • 97 篇 deep learning
  • 38 篇 anomaly detectio...
  • 38 篇 feature extracti...
  • 31 篇 convolutional ne...
  • 26 篇 unsupervised lea...
  • 24 篇 machine learning
  • 11 篇 convolution
  • 9 篇 semi-supervised ...
  • 9 篇 fault detection
  • 8 篇 clustering
  • 8 篇 image reconstruc...
  • 8 篇 deep clustering
  • 7 篇 semiconductor ma...
  • 7 篇 transfer learnin...
  • 7 篇 training
  • 6 篇 fault diagnosis
  • 6 篇 deep neural netw...
  • 6 篇 dimensionality r...
  • 6 篇 neural networks

机构

  • 4 篇 tongji univ sch ...
  • 3 篇 univ chinese aca...
  • 3 篇 higher coll tech...
  • 3 篇 northwestern pol...
  • 3 篇 inha univ dept c...
  • 3 篇 cesat islamabad ...
  • 2 篇 southwest jiaoto...
  • 2 篇 univ padua dept ...
  • 2 篇 sogang univ dept...
  • 2 篇 southeast univ s...
  • 2 篇 fraunhofer igd r...
  • 2 篇 florida atlantic...
  • 2 篇 univ med ctr utr...
  • 2 篇 univ med ctr utr...
  • 2 篇 chinese acad sci...
  • 2 篇 sungkyunkwan uni...
  • 2 篇 univ nacl jorge ...
  • 2 篇 southeast univ s...
  • 2 篇 univ calif davis...
  • 2 篇 univ texas san a...

作者

  • 4 篇 susto gian anton...
  • 3 篇 ghamisi pedram
  • 3 篇 sim sung-han
  • 3 篇 zreik majd
  • 3 篇 shin do hyoung
  • 3 篇 gloaguen richard
  • 3 篇 maggipinto marco
  • 3 篇 krishnan ram
  • 3 篇 beghi alessandro
  • 3 篇 rodriguez david
  • 3 篇 bak moon soo
  • 3 篇 yu jianbo
  • 3 篇 iqbal muhammad
  • 3 篇 isgum ivana
  • 3 篇 jeong seunghoo
  • 3 篇 bong cheolwoo
  • 3 篇 lee kanghyeok
  • 3 篇 shahi kasra rafi...
  • 3 篇 irfan muhammad
  • 3 篇 viergever max a.

语言

  • 397 篇 英文
  • 11 篇 其他
  • 2 篇 德文
  • 2 篇 法文
检索条件"主题词=convolutional autoencoder"
408 条 记 录,以下是111-120 订阅
排序:
Ultrasonic Guided Wave Dispersion Compensation Based on Fourier Basis convolutional autoencoder  43
Ultrasonic Guided Wave Dispersion Compensation Based on Four...
收藏 引用
43rd Chinese Control Conference (CCC)
作者: Zeng, Jianxin Mei, Lin Li, Shuaiyong Li, MaoYang Yang, Zhang Chongqing Univ Posts & Telecommun Minist Educ Key Lab Ind Internet Things & Networked Control Chongqing 400065 Peoples R China Chongqing Special Equipment Inspect & Res Inst Chongqing 401121 Peoples R China
Ultrasonic guided waves are widely used signals in industry, but their inherent dispersion and multimodal characteristics significantly impact practical applications. Considering the frequency-dependent nature of guid... 详细信息
来源: 评论
A Feature Extraction Method Based on convolutional autoencoder for Plant Leaves Classification  2nd
A Feature Extraction Method Based on Convolutional Autoencod...
收藏 引用
2nd IEEE Colombian Conference on Computational Intelligence (ColCACI)
作者: Paco Ramos, Mery M. Paco Ramos, Vanessa M. Loaiza Fabian, Arnold Osco Mamani, Erbert F. Univ Nacl Jorge Basadre Grohmann Tacna Peru
In this research, we present an approach based on convolutional autoencoder (CAE) and Support Vector Machine (SVM) for leaves classification of different trees. While previous approaches relied on image processing and... 详细信息
来源: 评论
A Class-Imbalanced Study with Feature Extraction via PCA and convolutional autoencoder  23
A Class-Imbalanced Study with Feature Extraction via PCA and...
收藏 引用
23rd IEEE International Conference on Information Reuse and Integration for Data Science (IEEE IRI)
作者: Salekshahrezaee, Zahra Leevy, Joffrey L. Khoshgoftaar, Taghi M. Florida Atlantic Univ Boca Raton FL 33431 USA
It is inherently challenging to train a machine learning algorithm on a class-imbalanced dataset. Under conditions of high dimensionality, this training process can become even more difficult due to the large number o... 详细信息
来源: 评论
Stacked causal convolutional autoencoder based speech compression method  32
Stacked causal convolutional autoencoder based speech compre...
收藏 引用
32nd IEEE Signal Processing and Communications Applications Conference (SIU)
作者: Bekiryazici, Tahir Aydemir, Gurkan Gurkan, Hakan Bursa Tekn Univ Elekt Elekt Muhendisligi Bolumu Bursa Turkiye
This study proposes a speech compression method based on one-dimensional convolutional autoencoder and residual vector quantization. The proposed method offers different compression ratios at low bit rates. Speech qua... 详细信息
来源: 评论
A convolutional autoencoder Approach for Weakly Supervised Anomaly Video Detection  15th
A Convolutional Autoencoder Approach for Weakly Supervised A...
收藏 引用
15th International Conference on Computational Collective Intelligence (ICCCI)
作者: Phan Nguyen Duc Hieu Phan Duy Hung FPT Univ Hanoi Vietnam
Weakly-supervised video anomaly detection uses video-level labels to avoid annotating all frames or segments in the training video. This problem is typically considered as a multiple instance learning problem, the tra... 详细信息
来源: 评论
Robust Deep 3D convolutional autoencoder for Hyperspectral Unmixing with Hypergraph Learning
收藏 引用
Journal of Harbin Institute of Technology(New Series) 2021年 第5期28卷 1-8页
作者: Peiyuan Jia Miao Zhang Yi Shen Department of Control Science and Engineering Harbin Institute of TechnologyHarbin 150001China
Hyperspectral unmixing aims to acquire pure spectra of distinct substances(endmembers)and fractional abundances from highly mixed *** this paper,a deep unmixing network framework is designed to deal with the noise ***... 详细信息
来源: 评论
Ensemble of One-Class Classifiers Based on Multi-level Hidden Representations Abstracted from convolutional autoencoder for Anomaly Detection  1
收藏 引用
31st International Conference on Artificial Neural Networks (ICANN)
作者: Wang, Xin-Tan Liu, Jian-Wei China Univ Petr Dept Automat Coll Informat Sci & Engn Beijing Peoples R China
Image anomaly detection has recently emerged a large number of methods, which are widely used in industry, medicine and other fields. In this paper, we propose a novel image anomaly detection method, named Ensemble of... 详细信息
来源: 评论
LEARNING SENSOR-SPECIFIC FEATURES FOR HYPERSPECTRAL IMAGES VIA 3-DIMENSIONAL convolutional autoencoder  37
LEARNING SENSOR-SPECIFIC FEATURES FOR HYPERSPECTRAL IMAGES V...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Ji, Jingyu Mei, Shaohui Hou, Junhui Li, Xu Du, Qian Northwestern Polytech Univ Sch Elect & Informat Xian 710129 Shaanxi Peoples R China City Univ Hong Kong Dept Comp Sci Kowloon Hong Kong Peoples R China Mississippi State Univ Dept Elect & Comp Engn Mississippi State MS 39762 USA
Deep learning techniques have brought in revolutionary achievements for feature learning of images. In this paper, a novel structure of 3-Dimensional convolutional autoencoder (3D-CAE) is proposed for hyperspectral sp... 详细信息
来源: 评论
HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON SEMI-SUPERVISED DUAL-BRANCH convolutional autoencoder WITH SELF-ATTENTION
HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON SEMI-SUPERVISED ...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Feng, Jie Ye, Zhanwei Li, Di Liang, Yuping Tang, Xu Zhang, Xiangrong Xidian Univ Minist Educ Key Lab Intelligent Percept & Image Understanding Xian 710071 Peoples R China
Deep learning method shows its powerful classification performance with sufficient available data. However, the labeled data is limited in hyperspectral images (HSIs). Semi-supervised algorithms have unique advantages... 详细信息
来源: 评论
UNSUPERVISED IMAGE SEGMENTATION USING convolutional autoencoder WITH TOTAL VARIATION REGULARIZATION AS PREPROCESSING
UNSUPERVISED IMAGE SEGMENTATION USING CONVOLUTIONAL AUTOENCO...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Wang, Chunlai Yang, Bin Liao, Yiwen Univ Stuttgart Inst Signal Proc & Syst Theory Stuttgart Germany
Conventional unsupervised image segmentation methods use color and geometric information and apply clustering algorithms over pixels. They preserve object boundaries well but often suffer from over-segmentation due to... 详细信息
来源: 评论