咨询与建议

限定检索结果

文献类型

  • 284 篇 期刊文献
  • 122 篇 会议
  • 3 篇 学位论文

馆藏范围

  • 409 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 375 篇 工学
    • 204 篇 计算机科学与技术...
    • 134 篇 电气工程
    • 47 篇 信息与通信工程
    • 35 篇 仪器科学与技术
    • 30 篇 控制科学与工程
    • 24 篇 生物医学工程(可授...
    • 23 篇 软件工程
    • 21 篇 机械工程
    • 19 篇 石油与天然气工程
    • 14 篇 测绘科学与技术
    • 14 篇 环境科学与工程(可...
    • 13 篇 材料科学与工程(可...
    • 10 篇 电子科学与技术(可...
    • 10 篇 土木工程
    • 9 篇 动力工程及工程热...
    • 8 篇 化学工程与技术
    • 6 篇 力学(可授工学、理...
    • 4 篇 建筑学
    • 4 篇 交通运输工程
    • 4 篇 船舶与海洋工程
  • 103 篇 理学
    • 38 篇 物理学
    • 30 篇 生物学
    • 17 篇 化学
    • 16 篇 地球物理学
    • 11 篇 数学
    • 4 篇 系统科学
  • 49 篇 医学
    • 26 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 10 篇 特种医学
  • 31 篇 管理学
    • 27 篇 管理科学与工程(可...
  • 10 篇 农学
  • 2 篇 法学
  • 2 篇 文学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 409 篇 convolutional au...
  • 97 篇 deep learning
  • 38 篇 anomaly detectio...
  • 38 篇 feature extracti...
  • 31 篇 convolutional ne...
  • 26 篇 unsupervised lea...
  • 24 篇 machine learning
  • 11 篇 convolution
  • 9 篇 semi-supervised ...
  • 9 篇 fault detection
  • 8 篇 clustering
  • 8 篇 image reconstruc...
  • 8 篇 deep clustering
  • 7 篇 semiconductor ma...
  • 7 篇 transfer learnin...
  • 7 篇 training
  • 6 篇 fault diagnosis
  • 6 篇 deep neural netw...
  • 6 篇 dimensionality r...
  • 6 篇 neural networks

机构

  • 4 篇 tongji univ sch ...
  • 3 篇 univ chinese aca...
  • 3 篇 higher coll tech...
  • 3 篇 northwestern pol...
  • 3 篇 inha univ dept c...
  • 3 篇 cesat islamabad ...
  • 2 篇 southwest jiaoto...
  • 2 篇 univ padua dept ...
  • 2 篇 sogang univ dept...
  • 2 篇 southeast univ s...
  • 2 篇 fraunhofer igd r...
  • 2 篇 florida atlantic...
  • 2 篇 univ med ctr utr...
  • 2 篇 univ med ctr utr...
  • 2 篇 chinese acad sci...
  • 2 篇 sungkyunkwan uni...
  • 2 篇 univ nacl jorge ...
  • 2 篇 southeast univ s...
  • 2 篇 univ calif davis...
  • 2 篇 univ texas san a...

作者

  • 4 篇 susto gian anton...
  • 3 篇 ghamisi pedram
  • 3 篇 sim sung-han
  • 3 篇 zreik majd
  • 3 篇 shin do hyoung
  • 3 篇 gloaguen richard
  • 3 篇 maggipinto marco
  • 3 篇 krishnan ram
  • 3 篇 beghi alessandro
  • 3 篇 rodriguez david
  • 3 篇 bak moon soo
  • 3 篇 yu jianbo
  • 3 篇 iqbal muhammad
  • 3 篇 isgum ivana
  • 3 篇 jeong seunghoo
  • 3 篇 bong cheolwoo
  • 3 篇 lee kanghyeok
  • 3 篇 shahi kasra rafi...
  • 3 篇 irfan muhammad
  • 3 篇 viergever max a.

语言

  • 397 篇 英文
  • 11 篇 其他
检索条件"主题词=convolutional autoencoder"
409 条 记 录,以下是281-290 订阅
排序:
Deep Representation for the Classification of Ultrasound Breast Tumors  16
Deep Representation for the Classification of Ultrasound Bre...
收藏 引用
16th International Conference on Ubiquitous Information Management and Communication (IMCOM)
作者: Song, Mingue Kim, Yanggon Towson Univ Dept Comp & Informat Sci Towson MD 21252 USA
An automated classification of ultrasound breast tumor is a vital step for the early prevention of abnormal breast cells. In general, radiologists manually handle this procedure, but manual analysis performed by indiv... 详细信息
来源: 评论
Deep Clustering for Improved Inter-Cluster Separability and Intra-Cluster Homogeneity with Cohesive Loss
收藏 引用
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS 2021年 第5期E104D卷 776-780页
作者: Kim, Byeonghak Loew, Murray Han, David K. Ko, Hanseok Korea Univ Dept Visual Informat Proc Seoul 02841 South Korea George Washington Univ Dept Biomed Engn Washington DC USA Drexel Univ Dept Elect & Comp Engn Philadelphia PA 19104 USA Korea Univ Sch Elect Engn Seoul 02841 South Korea
To date, many studies have employed clustering for the classification of unlabeled data. Deep separate clustering applies several deep learning models to conventional clustering algorithms to more clearly separate the... 详细信息
来源: 评论
Anomaly detection in genomic catalogues using unsupervised multi-view autoencoders
收藏 引用
BMC BIOINFORMATICS 2021年 第1期22卷 1-26页
作者: Ferre, Quentin Cheneby, Jeanne Puthier, Denis Capponi, Cecile Ballester, Benoit Aix Marseille Univ TAGC INSERM Marseille France Aix Marseille Univ Univ Toulon LIS CNRS Marseille France
Background Accurate identification of Transcriptional Regulator binding locations is essential for analysis of genomic regions, including Cis Regulatory Elements. The customary NGS approaches, predominantly ChIP-Seq, ... 详细信息
来源: 评论
Dual-Y network: infrared-visible image patches matching via semi-supervised transfer learning
收藏 引用
APPLIED INTELLIGENCE 2021年 第4期51卷 2188-2197页
作者: Mao, Yuanhong He, Zhanzhuang Xian Microelect Technol Inst Xian 710065 Peoples R China
Infrared-visible image patches matching has many applications, such as target recognition, vision-based navigation, and others. At present, deep learning has achieved excellent performance in visible image patches mat... 详细信息
来源: 评论
Sparse Representations for Object- and Ego-Motion Estimations in Dynamic Scenes
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021年 第6期32卷 2521-2534页
作者: Kashyap, Hirak J. Fowlkes, Charless C. Krichmar, Jeffrey L. Univ Calif Irvine Dept Comp Sci Irvine CA 92697 USA Univ Calif Irvine Dept Cognit Sci Irvine CA 92697 USA
Disentangling the sources of visual motion in a dynamic scene during self-movement or ego motion is important for autonomous navigation and tracking. In the dynamic image segments of a video frame containing independe... 详细信息
来源: 评论
Efficient structurally-strengthened generative adversarial network for MRI reconstruction
收藏 引用
NEUROCOMPUTING 2021年 422卷 51-61页
作者: Zhou, Wenzhong Du, Huiqian Mei, Wenbo Fang, Liping Beijing Inst Technol Sch Informat & Elect Beijing 100081 Peoples R China Beijing Inst Technol Sch Math & Stat Beijing 100081 Peoples R China
Compressed sensing based magnetic resonance imaging (CS-MRI) methods greatly shorten the scanning time while ensuring the quality of image reconstruction in an efficient way. Recently deep learning has been introduced... 详细信息
来源: 评论
Input-Aware Sparse Tensor Storage Format Selection for Optimizing MTTKRP
收藏 引用
IEEE TRANSACTIONS ON COMPUTERS 2021年 第8期71卷 1968-1981页
作者: Sun, Qingxiao Liu, Yi Yang, Hailong Dun, Ming Luan, Zhongzhi Gan, Lin Yang, Guangwen Qian, Depei Beihang Univ Sch Comp Sci & Engn Beijing 100191 Peoples R China Beihang Univ Sch Cyber Sci & Technol Beijing 100191 Peoples R China Tsinghua Univ Dept Comp Sci & Technol Beijing 100084 Peoples R China
Canonical polyadic decomposition (CPD) is one of the most common tensor computations adopted in many scientific applications. The major bottleneck of CPD is matricized tensor times Khatri-Rao product (MTTKRP). To opti... 详细信息
来源: 评论
Likelihood-based feature representation learning combined with neighborhood information for predicting circRNA-miRNA associations
收藏 引用
BRIEFINGS IN BIOINFORMATICS 2024年 第2期25卷 bbae020-bbae020页
作者: Guo, Lu-Xiang Wang, Lei You, Zhu-Hong Yu, Chang-Qing Hu, Meng-Lei Zhao, Bo-Wei Li, Yang Northwestern Polytech Univ Xian Peoples R China China Univ Min & Technol Xuzhou Peoples R China Xijing Univ Xian Peoples R China Peking Univ Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Hefei Univ Technol Hefei Peoples R China
Connections between circular RNAs (circRNAs) and microRNAs (miRNAs) assume a pivotal position in the onset, evolution, diagnosis and treatment of diseases and tumors. Selecting the most potential circRNA-related miRNA... 详细信息
来源: 评论
HYPERSPECTRAL CLUSTERING USING ATROUS SPATIAL-SPECTRAL convolutional NETWORK
HYPERSPECTRAL CLUSTERING USING ATROUS SPATIAL-SPECTRAL CONVO...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Shahi, Kasra Rafiezadeh Ghamisi, Pedram Rasti, Behnood Scheunders, Paul Gloaguen, Richard Univ Antwerp Imec Visionlab Dept Phys B-2000 Antwerp Belgium Helmholtz Inst Freiberg Resource Technol Helmholtz Zentrum Dresden Rossendorf D-09599 Freiberg Germany
Hyperspectral imaging is an important technology in the field of geosciences and remote sensing. However, the high-dimensional nature of hyperspectral images (HSIs) together with the limited availability of training/l... 详细信息
来源: 评论
Unsupervised Abnormal Sensor Signal Detection With Channelwise Reconstruction Errors
收藏 引用
IEEE ACCESS 2021年 9卷 39995-40007页
作者: Kwak, Mingu Kim, Seoung Bum Korea Univ Sch Ind Management Engn Seoul 02841 South Korea
Detecting an anomaly in multichannel signal data is a challenging task in various domains. It should take into account the cross-channel relationship and temporal relationship within each channel. Moreover, the signal... 详细信息
来源: 评论