咨询与建议

限定检索结果

文献类型

  • 283 篇 期刊文献
  • 122 篇 会议
  • 3 篇 学位论文

馆藏范围

  • 408 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 375 篇 工学
    • 203 篇 计算机科学与技术...
    • 135 篇 电气工程
    • 47 篇 信息与通信工程
    • 35 篇 仪器科学与技术
    • 30 篇 控制科学与工程
    • 26 篇 生物医学工程(可授...
    • 23 篇 软件工程
    • 21 篇 机械工程
    • 19 篇 石油与天然气工程
    • 14 篇 测绘科学与技术
    • 14 篇 环境科学与工程(可...
    • 13 篇 材料科学与工程(可...
    • 11 篇 电子科学与技术(可...
    • 10 篇 土木工程
    • 9 篇 动力工程及工程热...
    • 8 篇 化学工程与技术
    • 7 篇 力学(可授工学、理...
    • 4 篇 建筑学
    • 4 篇 交通运输工程
    • 4 篇 船舶与海洋工程
  • 103 篇 理学
    • 38 篇 物理学
    • 30 篇 生物学
    • 17 篇 化学
    • 16 篇 地球物理学
    • 12 篇 数学
    • 4 篇 系统科学
  • 50 篇 医学
    • 27 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 10 篇 特种医学
  • 31 篇 管理学
    • 27 篇 管理科学与工程(可...
  • 10 篇 农学
  • 2 篇 法学
  • 2 篇 文学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 408 篇 convolutional au...
  • 97 篇 deep learning
  • 38 篇 anomaly detectio...
  • 38 篇 feature extracti...
  • 31 篇 convolutional ne...
  • 26 篇 unsupervised lea...
  • 24 篇 machine learning
  • 11 篇 convolution
  • 9 篇 semi-supervised ...
  • 9 篇 fault detection
  • 8 篇 clustering
  • 8 篇 image reconstruc...
  • 8 篇 deep clustering
  • 7 篇 semiconductor ma...
  • 7 篇 transfer learnin...
  • 7 篇 training
  • 6 篇 fault diagnosis
  • 6 篇 deep neural netw...
  • 6 篇 dimensionality r...
  • 6 篇 neural networks

机构

  • 4 篇 tongji univ sch ...
  • 3 篇 univ chinese aca...
  • 3 篇 higher coll tech...
  • 3 篇 northwestern pol...
  • 3 篇 inha univ dept c...
  • 3 篇 cesat islamabad ...
  • 2 篇 southwest jiaoto...
  • 2 篇 univ padua dept ...
  • 2 篇 sogang univ dept...
  • 2 篇 southeast univ s...
  • 2 篇 fraunhofer igd r...
  • 2 篇 florida atlantic...
  • 2 篇 univ med ctr utr...
  • 2 篇 univ med ctr utr...
  • 2 篇 chinese acad sci...
  • 2 篇 sungkyunkwan uni...
  • 2 篇 univ nacl jorge ...
  • 2 篇 southeast univ s...
  • 2 篇 univ calif davis...
  • 2 篇 univ texas san a...

作者

  • 4 篇 susto gian anton...
  • 3 篇 ghamisi pedram
  • 3 篇 sim sung-han
  • 3 篇 zreik majd
  • 3 篇 shin do hyoung
  • 3 篇 gloaguen richard
  • 3 篇 maggipinto marco
  • 3 篇 krishnan ram
  • 3 篇 beghi alessandro
  • 3 篇 rodriguez david
  • 3 篇 bak moon soo
  • 3 篇 yu jianbo
  • 3 篇 iqbal muhammad
  • 3 篇 isgum ivana
  • 3 篇 jeong seunghoo
  • 3 篇 bong cheolwoo
  • 3 篇 lee kanghyeok
  • 3 篇 shahi kasra rafi...
  • 3 篇 irfan muhammad
  • 3 篇 viergever max a.

语言

  • 396 篇 英文
  • 11 篇 其他
检索条件"主题词=convolutional autoencoder"
408 条 记 录,以下是301-310 订阅
排序:
Making Noise - Improving Seismocardiography Based Heart Analysis With Denoising autoencoders  23
Making Noise - Improving Seismocardiography Based Heart Anal...
收藏 引用
8th International Workshop on Sensor-Based Activity Recognition and Artificial Intelligence (IWOAR)
作者: Burian, Jonas Toedtmann, Helmut Haescher, Marian Aehnelt, Mario Kuijper, Arjan Fraunhofer IGD Rostock Germany Fraunhofer IGD Darmstadt Germany
Seismocardiography is a method commonly used to monitor and prevent cardiovascular diseases. However, noise and artifacts in the signals often interfere with the assessment of cardiac health and the analysis of the si... 详细信息
来源: 评论
A Cycle-GAN Based Image Encoding Scheme for Privacy Enhanced Deep Neural Networks  19th
A Cycle-GAN Based Image Encoding Scheme for Privacy Enhanced...
收藏 引用
19th International Conference on Information Systems Security (ICISS)
作者: Rodriguez, David Krishnan, Ram Univ Texas San Antonio Dept Elect & Comp Engn San Antonio TX 78249 USA
Deep learning model training on cloud platforms typically require users to upload raw input data. However, uploading raw image data to cloud service providers raises serious privacy concerns. To address this problem, ... 详细信息
来源: 评论
An Energy-Efficient Reconfigurable autoencoder Implementation on FPGA  1
收藏 引用
Intelligent Systems Conference (IntelliSys)
作者: Isik, Murat Oldland, Matthew Zhou, Lifeng Drexel Univ Elect & Comp Engn Philadelphia PA 19104 USA
autoencoders are unsupervised neural networks that are used to process and compress input data and then reconstruct the data back to the original data size. This allows autoencoders to be used for different processing... 详细信息
来源: 评论
Performance Degradation Evaluation Model of Rolling Bearing Based on CAE-SVDD
Performance Degradation Evaluation Model of Rolling Bearing ...
收藏 引用
International Conference of The Efficiency and Performance Engineering Network (TEPEN)
作者: Dong, Xinyang Cao, Yunpeng Li, Hui Han, Xiaoyu Feng, Weixing Harbin Engn Univ Coll Intelligent Syst Sci & Engn Harbin 150001 Peoples R China Harbin Engn Univ Coll Power & Energy Engn Harbin 150001 Peoples R China China State Shipbldg Corp Ltd Res Inst 703 Harbin 150001 Peoples R China
Rolling bearing is one of the core components of mechanical equipment, and the degradation state of its performance can directly affect the stability of the entire mechanical equipment, so the evaluation of the degrad... 详细信息
来源: 评论
Deep Learning Anomaly Detection methods to passively detect COVID-19 from Audio
Deep Learning Anomaly Detection methods to passively detect ...
收藏 引用
IEEE International Conference on Digital Health (ICDH) / IEEE World Congress on Services (SERVICES)
作者: Murthy, Shreesha Narasimha Agu, Emmanuel Worcester Polytech Inst Worcester MA 01609 USA
The world has been severely affected by COVID-19, an infectious disease caused by the SARS-Cov-2 coronavirus. COVID-19 incubates in a patient for 7 days before symptoms manifest. The identification of the presence of ... 详细信息
来源: 评论
Direct Prediction of Cardiovascular Mortality from Low-dose Chest CT using Deep Learning
Direct Prediction of Cardiovascular Mortality from Low-dose ...
收藏 引用
Conference on Medical Imaging: Image Processing
作者: van Velzen, Sanne G. M. Zreik, Majd Lessmann, Nikolas Viergever, Max A. de Jong, Pim A. Verkooijen, Helena M. Isgum, Ivana Univ Med Ctr Utrecht Image Sci Inst Utrecht Netherlands Univ Med Ctr Utrecht Dept Radiol Utrecht Netherlands Univ Utrecht Univ Med Ctr Utrecht Imaging Div Utrecht Netherlands
Cardiovascular disease (CVD) is a leading cause of death in the lung cancer screening population. Chest CT scans made in lung cancer screening are suitable for identification of participants at risk of CVD. Existing m... 详细信息
来源: 评论
Acoustic Anomaly Detection of Machinery using autoencoder based Deep Learning  32
Acoustic Anomaly Detection of Machinery using Autoencoder ba...
收藏 引用
32nd Southern African Universities Power Engineering Conference (SAUPEC)
作者: Chinnasamy, Mark Damien Sumbwanyambe, Mbuyu Hlalele, Tlotlollo Sidwell Univ South Africa Dept Elect Engn Johannesburg South Africa
This research paper focuses on the domain of Acoustic Anomaly Detection (AAD) in industrial machinery using Deep Learning techniques. The primary objective of this study is to develop a reliable system for detecting a... 详细信息
来源: 评论
AI-Based Temperature Monitoring System for Hydro Generators  23
AI-Based Temperature Monitoring System for Hydro Generators
收藏 引用
23rd International Symposium INFOTEH-JAHORINA (INFOTEH)
作者: Milic, Sasa D. Kozicic, Misa Univ Belgrade Elect Engn Inst Nikola Tesla Belgrade Serbia HPPs Derdap EPS JSC Belgrade Kladovo Serbia
Hydrogenerators operate in challenging environments, and temperature variations can significantly impact their performance. Temperature monitoring systems often rely on remote infrared and contact real-time temperatur... 详细信息
来源: 评论
A Deep Learning-based Approach to Anomaly Detection with 2-Dimensional Data in Manufacturing  17
A Deep Learning-based Approach to Anomaly Detection with 2-D...
收藏 引用
17th IEEE International Conference on Industrial Informatics (INDIN)
作者: Maggipinto, Marco Beghi, Alessandro Susto, Gian Antonio Univ Padua Dept Informat Engn Padua Italy
In modern manufacturing scenarios, detecting anomalies in production systems is pivotal to keep high-quality standards and reduce costs. Even in the Industry 4.0 context, real-world monitoring systems are often simple... 详细信息
来源: 评论
R-CAE-Informer Based Short-Term Load Forecasting by Enhancing Feature in Smart Grids  20th
R-CAE-Informer Based Short-Term Load Forecasting by Enhancin...
收藏 引用
20th International Conference on Intelligent Computing (ICIC)
作者: Zhang, Yiying Liu, Ke Dong, Yanping Li, Siwei Li, Wenjing Tianjin Univ Sci & Technol Tianjin 300457 Peoples R China Beijing Fibrlink Commun Co LTD Beijing 100070 Peoples R China State GridInformat & Telecommun Co Beijing 100192 Peoples R China
As renewable energy usage increases, power systems become more intricate and demand fluctuations intensify. Accurate short-term load forecasting (STLF) is vital for balancing energy supply and demand. Traditional mode... 详细信息
来源: 评论