咨询与建议

限定检索结果

文献类型

  • 283 篇 期刊文献
  • 122 篇 会议
  • 3 篇 学位论文

馆藏范围

  • 408 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 374 篇 工学
    • 201 篇 计算机科学与技术...
    • 135 篇 电气工程
    • 46 篇 信息与通信工程
    • 33 篇 仪器科学与技术
    • 26 篇 控制科学与工程
    • 25 篇 生物医学工程(可授...
    • 21 篇 机械工程
    • 21 篇 软件工程
    • 19 篇 石油与天然气工程
    • 14 篇 测绘科学与技术
    • 13 篇 材料科学与工程(可...
    • 12 篇 环境科学与工程(可...
    • 11 篇 电子科学与技术(可...
    • 10 篇 土木工程
    • 8 篇 化学工程与技术
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 4 篇 建筑学
    • 4 篇 交通运输工程
    • 4 篇 船舶与海洋工程
  • 103 篇 理学
    • 38 篇 物理学
    • 30 篇 生物学
    • 17 篇 化学
    • 16 篇 地球物理学
    • 12 篇 数学
    • 4 篇 系统科学
  • 48 篇 医学
    • 26 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 10 篇 特种医学
  • 31 篇 管理学
    • 27 篇 管理科学与工程(可...
  • 8 篇 农学
  • 2 篇 法学
  • 2 篇 文学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 408 篇 convolutional au...
  • 97 篇 deep learning
  • 38 篇 anomaly detectio...
  • 38 篇 feature extracti...
  • 31 篇 convolutional ne...
  • 26 篇 unsupervised lea...
  • 24 篇 machine learning
  • 11 篇 convolution
  • 9 篇 semi-supervised ...
  • 9 篇 fault detection
  • 8 篇 clustering
  • 8 篇 image reconstruc...
  • 8 篇 deep clustering
  • 7 篇 semiconductor ma...
  • 7 篇 transfer learnin...
  • 7 篇 training
  • 6 篇 fault diagnosis
  • 6 篇 deep neural netw...
  • 6 篇 dimensionality r...
  • 6 篇 neural networks

机构

  • 4 篇 tongji univ sch ...
  • 3 篇 univ chinese aca...
  • 3 篇 higher coll tech...
  • 3 篇 northwestern pol...
  • 3 篇 inha univ dept c...
  • 3 篇 cesat islamabad ...
  • 2 篇 southwest jiaoto...
  • 2 篇 univ padua dept ...
  • 2 篇 sogang univ dept...
  • 2 篇 southeast univ s...
  • 2 篇 fraunhofer igd r...
  • 2 篇 florida atlantic...
  • 2 篇 univ med ctr utr...
  • 2 篇 univ med ctr utr...
  • 2 篇 chinese acad sci...
  • 2 篇 sungkyunkwan uni...
  • 2 篇 univ nacl jorge ...
  • 2 篇 southeast univ s...
  • 2 篇 univ calif davis...
  • 2 篇 univ texas san a...

作者

  • 4 篇 susto gian anton...
  • 3 篇 ghamisi pedram
  • 3 篇 sim sung-han
  • 3 篇 zreik majd
  • 3 篇 shin do hyoung
  • 3 篇 gloaguen richard
  • 3 篇 maggipinto marco
  • 3 篇 krishnan ram
  • 3 篇 beghi alessandro
  • 3 篇 rodriguez david
  • 3 篇 bak moon soo
  • 3 篇 yu jianbo
  • 3 篇 iqbal muhammad
  • 3 篇 isgum ivana
  • 3 篇 jeong seunghoo
  • 3 篇 bong cheolwoo
  • 3 篇 lee kanghyeok
  • 3 篇 shahi kasra rafi...
  • 3 篇 irfan muhammad
  • 3 篇 viergever max a.

语言

  • 397 篇 英文
  • 11 篇 其他
  • 2 篇 德文
  • 2 篇 法文
检索条件"主题词=convolutional autoencoder"
408 条 记 录,以下是331-340 订阅
A Deep Learning-based Approach to Anomaly Detection with 2-Dimensional Data in Manufacturing  17
A Deep Learning-based Approach to Anomaly Detection with 2-D...
收藏 引用
17th IEEE International Conference on Industrial Informatics (INDIN)
作者: Maggipinto, Marco Beghi, Alessandro Susto, Gian Antonio Univ Padua Dept Informat Engn Padua Italy
In modern manufacturing scenarios, detecting anomalies in production systems is pivotal to keep high-quality standards and reduce costs. Even in the Industry 4.0 context, real-world monitoring systems are often simple... 详细信息
来源: 评论
Medical image denoising using convolutional denoising autoencoders  16
Medical image denoising using convolutional denoising autoen...
收藏 引用
16th IEEE International Conference on Data Mining (ICDM)
作者: Gondara, Lovedeep Simon Fraser Univ Dept Comp Sci Burnaby BC Canada
Image denoising is an important pre-processing step in medical image analysis. Different algorithms have been proposed in past three decades with varying denoising performances. More recently, having outperformed all ... 详细信息
来源: 评论
An Energy-Efficient Reconfigurable autoencoder Implementation on FPGA  1
收藏 引用
Intelligent Systems Conference (IntelliSys)
作者: Isik, Murat Oldland, Matthew Zhou, Lifeng Drexel Univ Elect & Comp Engn Philadelphia PA 19104 USA
autoencoders are unsupervised neural networks that are used to process and compress input data and then reconstruct the data back to the original data size. This allows autoencoders to be used for different processing... 详细信息
来源: 评论
Performance Degradation Evaluation Model of Rolling Bearing Based on CAE-SVDD
Performance Degradation Evaluation Model of Rolling Bearing ...
收藏 引用
International Conference of The Efficiency and Performance Engineering Network (TEPEN)
作者: Dong, Xinyang Cao, Yunpeng Li, Hui Han, Xiaoyu Feng, Weixing Harbin Engn Univ Coll Intelligent Syst Sci & Engn Harbin 150001 Peoples R China Harbin Engn Univ Coll Power & Energy Engn Harbin 150001 Peoples R China China State Shipbldg Corp Ltd Res Inst 703 Harbin 150001 Peoples R China
Rolling bearing is one of the core components of mechanical equipment, and the degradation state of its performance can directly affect the stability of the entire mechanical equipment, so the evaluation of the degrad... 详细信息
来源: 评论
Quality inspection of translucent and micro-structured functional surfaces  3
Quality inspection of translucent and micro-structured funct...
收藏 引用
Conference on AI and Optical Data Sciences III
作者: Brosch, Nicole Ginner, Laurin Schneider, Sarah Antensteiner, Doris Traxler, Lukas AIT Austrian Inst Technol Giefinggasse 4 A-1210 Vienna Austria Tufts Univ Human Robot Interact Lab Boston Ave 200 Medford MA 02155 USA
Micro-structured films with surface riblets are used to reduce aerodynamic drag. This is especially relevant on fast and large objects such as on aircraft wings, where they are installed to increase efficiency (e.g., ... 详细信息
来源: 评论
CAEN: A Deep Learning Approach to Mobile App Traffic Identification  6
CAEN: A Deep Learning Approach to Mobile App Traffic Identif...
收藏 引用
6th Annual Conference on Computational Science and Computational Intelligence (CSCI)
作者: Li, Ding Zhu, Yuefei Lin, Wei Chen, Yan Informat Engn Univ Zhengzhou Peoples R China
Mobile app traffic now accounts for a majority owing to the booming mobile devices and mobile apps. State-of-the-art identification methods, such as DPI and flow-based classifiers, have difficulties in designing featu... 详细信息
来源: 评论
Monoaural Audio Source Separation Using Deep convolutional Neural Networks  13th
Monoaural Audio Source Separation Using Deep Convolutional N...
收藏 引用
13th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA)
作者: Chandna, Pritish Miron, Marius Janer, Jordi Gomez, Emilia Univ Pompeu Fabra Mus Technol Grp Barcelona Spain
In this paper we introduce a low-latency monaural source separation framework using a convolutional Neural Network (CNN). We use a CNN to estimate time-frequency soft masks which are applied for source separation. We ... 详细信息
来源: 评论
AI-Based Temperature Monitoring System for Hydro Generators  23
AI-Based Temperature Monitoring System for Hydro Generators
收藏 引用
23rd International Symposium INFOTEH-JAHORINA (INFOTEH)
作者: Milic, Sasa D. Kozicic, Misa Univ Belgrade Elect Engn Inst Nikola Tesla Belgrade Serbia HPPs Derdap EPS JSC Belgrade Kladovo Serbia
Hydrogenerators operate in challenging environments, and temperature variations can significantly impact their performance. Temperature monitoring systems often rely on remote infrared and contact real-time temperatur... 详细信息
来源: 评论
Robot Path Planning by LSTM Network Under Changing Environment
Robot Path Planning by LSTM Network Under Changing Environme...
收藏 引用
International Conference on Computer, Communication and Computational Sciences (IC4S)
作者: Inoue, Masaya Yamashita, Takahiro Nishida, Takeshi Kyushu Inst Technol 1-1 Sensui Kitakyushu Fukuoka 8048550 Japan
Path planning is an important function for executing autonomous moving robots, and many path planning methods that satisfy various constraints, such as avoiding obstacles and energy efficiency, have been proposed. How... 详细信息
来源: 评论
R-CAE-Informer Based Short-Term Load Forecasting by Enhancing Feature in Smart Grids  20th
R-CAE-Informer Based Short-Term Load Forecasting by Enhancin...
收藏 引用
20th International Conference on Intelligent Computing (ICIC)
作者: Zhang, Yiying Liu, Ke Dong, Yanping Li, Siwei Li, Wenjing Tianjin Univ Sci & Technol Tianjin 300457 Peoples R China Beijing Fibrlink Commun Co LTD Beijing 100070 Peoples R China State GridInformat & Telecommun Co Beijing 100192 Peoples R China
As renewable energy usage increases, power systems become more intricate and demand fluctuations intensify. Accurate short-term load forecasting (STLF) is vital for balancing energy supply and demand. Traditional mode... 详细信息
来源: 评论