咨询与建议

限定检索结果

文献类型

  • 280 篇 期刊文献
  • 122 篇 会议
  • 3 篇 学位论文

馆藏范围

  • 405 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 372 篇 工学
    • 201 篇 计算机科学与技术...
    • 134 篇 电气工程
    • 47 篇 信息与通信工程
    • 36 篇 仪器科学与技术
    • 31 篇 控制科学与工程
    • 24 篇 生物医学工程(可授...
    • 23 篇 软件工程
    • 21 篇 机械工程
    • 19 篇 石油与天然气工程
    • 14 篇 测绘科学与技术
    • 13 篇 环境科学与工程(可...
    • 12 篇 材料科学与工程(可...
    • 10 篇 电子科学与技术(可...
    • 10 篇 土木工程
    • 9 篇 动力工程及工程热...
    • 7 篇 化学工程与技术
    • 6 篇 力学(可授工学、理...
    • 4 篇 建筑学
    • 4 篇 交通运输工程
    • 4 篇 船舶与海洋工程
  • 102 篇 理学
    • 38 篇 物理学
    • 30 篇 生物学
    • 17 篇 化学
    • 16 篇 地球物理学
    • 11 篇 数学
    • 4 篇 系统科学
  • 49 篇 医学
    • 26 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 10 篇 特种医学
  • 31 篇 管理学
    • 27 篇 管理科学与工程(可...
  • 10 篇 农学
  • 2 篇 法学
  • 2 篇 文学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 405 篇 convolutional au...
  • 95 篇 deep learning
  • 38 篇 anomaly detectio...
  • 38 篇 feature extracti...
  • 30 篇 convolutional ne...
  • 26 篇 unsupervised lea...
  • 24 篇 machine learning
  • 11 篇 convolution
  • 9 篇 semi-supervised ...
  • 9 篇 fault detection
  • 8 篇 clustering
  • 8 篇 image reconstruc...
  • 8 篇 deep clustering
  • 7 篇 semiconductor ma...
  • 7 篇 transfer learnin...
  • 7 篇 training
  • 6 篇 fault diagnosis
  • 6 篇 deep neural netw...
  • 6 篇 dimensionality r...
  • 6 篇 neural networks

机构

  • 4 篇 tongji univ sch ...
  • 3 篇 univ chinese aca...
  • 3 篇 higher coll tech...
  • 3 篇 northwestern pol...
  • 3 篇 inha univ dept c...
  • 3 篇 cesat islamabad ...
  • 2 篇 southwest jiaoto...
  • 2 篇 univ padua dept ...
  • 2 篇 sogang univ dept...
  • 2 篇 southeast univ s...
  • 2 篇 fraunhofer igd r...
  • 2 篇 florida atlantic...
  • 2 篇 univ med ctr utr...
  • 2 篇 univ med ctr utr...
  • 2 篇 chinese acad sci...
  • 2 篇 sungkyunkwan uni...
  • 2 篇 univ nacl jorge ...
  • 2 篇 southeast univ s...
  • 2 篇 univ calif davis...
  • 2 篇 univ texas san a...

作者

  • 4 篇 susto gian anton...
  • 3 篇 ghamisi pedram
  • 3 篇 sim sung-han
  • 3 篇 zreik majd
  • 3 篇 shin do hyoung
  • 3 篇 gloaguen richard
  • 3 篇 maggipinto marco
  • 3 篇 krishnan ram
  • 3 篇 beghi alessandro
  • 3 篇 rodriguez david
  • 3 篇 bak moon soo
  • 3 篇 yu jianbo
  • 3 篇 iqbal muhammad
  • 3 篇 isgum ivana
  • 3 篇 jeong seunghoo
  • 3 篇 bong cheolwoo
  • 3 篇 lee kanghyeok
  • 3 篇 shahi kasra rafi...
  • 3 篇 irfan muhammad
  • 3 篇 viergever max a.

语言

  • 394 篇 英文
  • 11 篇 其他
  • 1 篇 德文
  • 1 篇 法文
检索条件"主题词=convolutional autoencoder"
405 条 记 录,以下是81-90 订阅
排序:
Deep convolutional autoencoder-based Lossy Image Compression  33
Deep Convolutional AutoEncoder-based Lossy Image Compression
收藏 引用
33rd Picture Coding Symposium (PCS)
作者: Cheng, Zhengxue Sun, Heming Takeuchi, Masaru Katto, Jiro Waseda Univ Grad Sch Fundamental Sci & Engn Tokyo Japan
Image compression has been investigated as a fundamental research topic for many decades. Recently, deep learning has achieved great success in many computer vision tasks, and is gradually being used in image compress... 详细信息
来源: 评论
Ultrasonic Guided Wave Dispersion Compensation Based on Fourier Basis convolutional autoencoder  43
Ultrasonic Guided Wave Dispersion Compensation Based on Four...
收藏 引用
43rd Chinese Control Conference (CCC)
作者: Zeng, Jianxin Mei, Lin Li, Shuaiyong Li, MaoYang Yang, Zhang Chongqing Univ Posts & Telecommun Minist Educ Key Lab Ind Internet Things & Networked Control Chongqing 400065 Peoples R China Chongqing Special Equipment Inspect & Res Inst Chongqing 401121 Peoples R China
Ultrasonic guided waves are widely used signals in industry, but their inherent dispersion and multimodal characteristics significantly impact practical applications. Considering the frequency-dependent nature of guid... 详细信息
来源: 评论
A Feature Extraction Method Based on convolutional autoencoder for Plant Leaves Classification
A Feature Extraction Method Based on Convolutional Autoencod...
收藏 引用
2nd IEEE Colombian Conference on Computational Intelligence (ColCACI)
作者: Paco Ramos, Mery Paco Ramos, Vanessa Loaiza Fabian, Arnold Osco Mamani, Erbert Univ Nacl Jorge Basadre Grohmann Tacna Peru
In this research, we present an approach based on convolutional autoencoder (CAE) and Support Vector Machine (SVM) for leaves classification of different trees. While previous approaches relied on image processing and... 详细信息
来源: 评论
Latent Feature Separation and Extraction with Multiple Parallel Encoders for convolutional autoencoder
Latent Feature Separation and Extraction with Multiple Paral...
收藏 引用
IEEE International Conference on Big Data and Smart Computing (BigComp)
作者: Kim, Jaehyun Kim, Myungjun Shin, Hyunjung Ajou Univ Dept Artificial Intelligence Suwon South Korea Ajou Univ Dept Artificial Intelligence Dept Ind Engn Suwon South Korea
Much of the real-world image data is unlabeled or mislabeled. Therefore, even if there is no label, if similar images can be grouped together with image data itself and used the group as a label, more image data can b... 详细信息
来源: 评论
Unsupervised convolutional autoencoder-Based Feature Learning for Automatic Detection of Plant Diseases  6
Unsupervised Convolutional Autoencoder-Based Feature Learnin...
收藏 引用
6th Annual International Conference on Computer, Control, Informatics and its Applications (IC3INA)
作者: Pardede, Hilman F. Suryawati, Endang Sustika, Rika Zilvan, Vicky Indonesian Inst Sci Res Ctr Informat Bandung Indonesia
Developing an automatic detector of plant diseases is one of application fields in machine learning. Ground-truth diagnoses of plant diseases which are conducted by experts in laboratory tests are often inapplicable f... 详细信息
来源: 评论
Polycrystalline Silicon Wafer Scratch Segmentation based on Deep convolutional autoencoder
Polycrystalline Silicon Wafer Scratch Segmentation based on ...
收藏 引用
International Conference on Electronics, Information, and Communication (ICEIC)
作者: Ranjan, Navin Bhandari, Sovit Kim, Yeong-Chan Kim, Hoon Incheon Natl Univ IoT & Big Data Res Ctr Dept Elect Engn Incheon South Korea
Silicon chips are the backbone of the current digital era, and it is crucial to find or detect defects like a scratch on the surface of the silicon wafer during production to improve the yield. In the past, traditiona... 详细信息
来源: 评论
VGG-CAE: Unsupervised Visual Place Recognition Using VGG16-Based convolutional autoencoder  4th
VGG-CAE: Unsupervised Visual Place Recognition Using VGG16-B...
收藏 引用
4th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Xu, Zhenyu Zhang, Qieshi Hao, Fusheng Ren, Ziliang Kang, Yuhang Cheng, Jun Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Peoples R China Univ Chinese Acad Sci Shenzhen Coll Adv Technol Beijing Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
Visual Place Recognition (VPR) is a challenging task in Visual Simultaneous Localization and Mapping (VSLAM), which expects to find out paired images corresponding to the same place in different conditions. Although m... 详细信息
来源: 评论
A Sparse convolutional autoencoder for Joint Feature Extraction and Clustering of Metastatic Prostate Cancer Images  22nd
A Sparse Convolutional Autoencoder for Joint Feature Extract...
收藏 引用
22nd International Conference on Artificial Intelligence in Medicine (AIME)
作者: Chen, Zhijun Sayar, Erolcan Zhang, Haoyue Richards, Helen Liu, Lucas Turkbey, Baris Haffner, Michael Harmon, Stephanie NCI Mol Imaging Branch NIH Bethesda MD 20892 USA Fred Hutchinson Canc Ctr Data Sci Integrated Res Ctr Seattle WA 98109 USA
Metastatic prostate cancer images contain rich and complex information about cellular features. However, due to high level pathogenomic diversity and lack of clinically-validated morphological characteristics, these i... 详细信息
来源: 评论
DISEASE GRADING OF HETEROGENEOUS TISSUE USING convolutional autoencoder  14
DISEASE GRADING OF HETEROGENEOUS TISSUE USING CONVOLUTIONAL ...
收藏 引用
IEEE 14th International Symposium on Biomedical Imaging (ISBI) - From Nano to Macro
作者: Zerhouni, Erwan Prisacari, Bogdan Zhong, Qing Wild, Peter Gabrani, Maria IBM Res Zurich Saeumerstr 4 CH-8803 Ruschlikon Switzerland Univ Hosp Zurich Inst Surg Pathol Schmelzbergstr 12 CH-8091 Zurich Switzerland
One of the main challenges of histological image analysis is the high dimensionality of the images. This can be addressed via summarizing techniques or feature engineering. However, such approaches can limit the perfo... 详细信息
来源: 评论
DENOISING convolutional autoencoder BASED B-MODE ULTRASOUND TONGUE IMAGE FEATURE EXTRACTION  44
DENOISING CONVOLUTIONAL AUTOENCODER BASED B-MODE ULTRASOUND ...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Li, Bo Xu, Kele Feng, Dawei Mi, Haibo Wang, Huaimin Zhu, Jian Beijing Univ Posts & Telecommun Automat Dept Beijing 100876 Peoples R China Natl Key Lab Parallel & Distributed Proc Changsha Hunan Peoples R China Natl Univ Def Technol Changsha Hunan Peoples R China Univ Michigan Dept Linguist Ann Arbor MI 48109 USA
B-mode ultrasound tongue imaging is widely used in the speech production field. However, efficient interpretation is in a great need for the tongue image sequences. Inspired by the recent success of unsupervised deep ... 详细信息
来源: 评论