咨询与建议

限定检索结果

文献类型

  • 6 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 7 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 理学
    • 3 篇 地球物理学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 地理学
    • 1 篇 地质学
    • 1 篇 生物学
  • 5 篇 工学
    • 3 篇 计算机科学与技术...
    • 2 篇 软件工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 控制科学与工程
    • 1 篇 地质资源与地质工...
    • 1 篇 生物医学工程(可授...
  • 1 篇 医学
    • 1 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 7 篇 convolutional au...
  • 1 篇 image completion
  • 1 篇 random forest
  • 1 篇 track fastener l...
  • 1 篇 fan beam compute...
  • 1 篇 pseudo-hilbert s...
  • 1 篇 mtf
  • 1 篇 mineral prospect...
  • 1 篇 support vector m...
  • 1 篇 skip connections
  • 1 篇 feature identifi...
  • 1 篇 distributed acou...
  • 1 篇 stock market pre...
  • 1 篇 ultra-weak fiber...
  • 1 篇 deblending
  • 1 篇 feature extracti...
  • 1 篇 sphere phantom
  • 1 篇 distributed vibr...
  • 1 篇 image inpainting
  • 1 篇 convolutional ne...

机构

  • 1 篇 univ calif san d...
  • 1 篇 college of big d...
  • 1 篇 shaoguan univ sc...
  • 1 篇 information secu...
  • 1 篇 nat resources sh...
  • 1 篇 univ calif irvin...
  • 1 篇 shaanxi ctr mine...
  • 1 篇 northwestern pol...
  • 1 篇 northwestern pol...
  • 1 篇 shaanxi inst geo...
  • 1 篇 korea res inst s...
  • 1 篇 wuhan univ techn...
  • 1 篇 wuhan univ techn...
  • 1 篇 yonsei univ sch ...
  • 1 篇 china univ petr ...
  • 1 篇 yonsei univ yons...

作者

  • 1 篇 li sheng
  • 1 篇 jiang jinpeng
  • 1 篇 dai fei
  • 1 篇 chen yuyao
  • 1 篇 duan hanting
  • 1 篇 zhang zhenkai
  • 1 篇 chen chong
  • 1 篇 baek jongduk
  • 1 篇 qiang zhenping
  • 1 篇 niu libo
  • 1 篇 nan qiuming
  • 1 篇 chien chih-chieh
  • 1 篇 sun lizhi
  • 1 篇 zhang qinghui
  • 1 篇 jenkins ii willi...
  • 1 篇 yang na
  • 1 篇 li junqiu
  • 1 篇 yu sheng
  • 1 篇 xue yaru
  • 1 篇 jin liang

语言

  • 7 篇 英文
检索条件"主题词=convolutional autoencoder network"
7 条 记 录,以下是1-10 订阅
排序:
Looseness Identification of Track Fasteners Based on Ultra-Weak FBG Sensing Technology and convolutional autoencoder network
收藏 引用
SENSORS 2022年 第15期22卷 5653-5653页
作者: Li, Sheng Jin, Liang Jiang, Jinpeng Wang, Honghai Nan, Qiuming Sun, Lizhi Wuhan Univ Technol Natl Engn Res Ctr Fiber Opt Sensing Technol & Net Wuhan 430070 Peoples R China Wuhan Univ Technol Sch Informat Engn Wuhan 430070 Peoples R China Univ Calif Irvine Dept Civil & Environm Engn Irvine CA 92697 USA
Changes in the geological environment and track wear, and deterioration of train bogies may lead to the looseness of subway fasteners. Identifying loose fasteners randomly distributed along the subway line is of great... 详细信息
来源: 评论
Mineral Prospectivity Prediction by Integration of convolutional autoencoder network and Random Forest
收藏 引用
NATURAL RESOURCES RESEARCH 2022年 第3期31卷 1103-1119页
作者: Yang, Na Zhang, Zhenkai Yang, Jianhua Hong, Zenglin Northwestern Polytech Univ Sch Automat Xian 710072 Peoples R China Northwestern Polytech Univ Res Ctr Intelligent Geol Survey Xian 710072 Peoples R China Shaanxi Ctr Mineral Geol Survey Xian 710068 Peoples R China Nat Resources Shaanxi Satellite Applicat Technol Xian 710119 Peoples R China Shaanxi Inst Geol Survey Xian 710054 Peoples R China
The convolutional neural networks used widely in mineral prospectivity prediction usually perform mixed feature extraction for multichannel inputs. This results in redundant features and impacts further improvement of... 详细信息
来源: 评论
Sphere phantom approach to measure MTF of computed tomography system using convolutional autoencoder network
Sphere phantom approach to measure MTF of computed tomograph...
收藏 引用
Medical Imaging Conference - Physics of Medical Imaging
作者: Lee, Changwoo Baek, Jongduk Korea Res Inst Stand & Sci Safety Measurement Inst Daejeon South Korea Yonsei Univ Sch Integrated Technol Seoul South Korea Yonsei Univ Yonsei Inst Convergence Technol Seoul South Korea
Image quality assessment is important task to maintain and improve the imaging system performance, and modulation transfer function (MTF) is widely used as a quantitative metric describing the spatial resolution of an... 详细信息
来源: 评论
Unsupervised seismic data deblending based on the convolutional autoencoder regularization
收藏 引用
ACTA GEOPHYSICA 2022年 第3期70卷 1171-1182页
作者: Xue, Yaru Chen, Yuyao Jiang, Minhui Duan, Hanting Niu, Libo Chen, Chong China Univ Petr Coll Informat Sci & Engn State Key Lab Petr Resources & Prospecting Beijing 102249 Peoples R China
Simultaneous source technology can provide high-quality seismic data with lower acquisition costs. However, a deblending algorithm is needed to suppress the blending noise. The supervised deep learning methods are eff... 详细信息
来源: 评论
Automatic classification with an autoencoder of seismic signals on a distributed acoustic sensing cable
收藏 引用
COMPUTERS AND GEOTECHNICS 2023年 155卷
作者: Chien, Chih-Chieh Jenkins II, William F. Gerstoft, Peter Zumberge, Mark Mellors, Robert Univ Calif San Diego Scripps Inst Oceanog La Jolla CA 92037 USA
This study probes the association between fluid injection in enhanced geothermal systems and certain kinds of seismicity that may result from hydraulic fracturing occurring at depth using unsupervised machine learning... 详细信息
来源: 评论
Image Inpainting Based on Improved Deep convolutional Auto-encoder network
收藏 引用
Chinese Journal of Electronics 2020年 第6期29卷 1074-1084页
作者: QIANG Zhenping HE Libo DAI Fei ZHANG Qinghui LI Junqiu College of Big Data and Intelligent Engineering Southwest Forestry University Information Security College Yunnan Police College
This paper proposes an effective image inpainting method using an improved deep convolutional auto-encoder *** analogy with exiting methods of image inpainting based on auto-decoders,inpainting methods using the deep ... 详细信息
来源: 评论
Unsupervised feature extraction with convolutional autoencoder with application to daily stock market prediction
收藏 引用
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE 2021年 第16期33卷 e6282-e6282页
作者: Xie, Li Yu, Sheng Shaoguan Univ Sch Informat Sci & Engn Shaoguan 512005 Guangdong Peoples R China
Due to the volatility and noise of the stock market, accurately obtaining the trend of the stock market is a challenging problem, and gets the attention of many researchers and speculators. Recently, convolutional neu... 详细信息
来源: 评论