咨询与建议

限定检索结果

文献类型

  • 14 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 20 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 19 篇 工学
    • 11 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 4 篇 信息与通信工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 测绘科学与技术
    • 1 篇 软件工程
  • 6 篇 理学
    • 5 篇 物理学
    • 1 篇 数学
  • 2 篇 文学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 20 篇 convolutional en...
  • 7 篇 speech enhanceme...
  • 3 篇 deep learning
  • 2 篇 deep neural netw...
  • 2 篇 long short-term ...
  • 1 篇 uncertainty quan...
  • 1 篇 automatic speake...
  • 1 篇 tf-transformer
  • 1 篇 noise suppressio...
  • 1 篇 ear detection te...
  • 1 篇 physics-constrai...
  • 1 篇 image-pixels
  • 1 篇 object detection
  • 1 篇 transformer
  • 1 篇 fully convolutio...
  • 1 篇 t-f masking
  • 1 篇 biometric recogn...
  • 1 篇 dual-path transf...
  • 1 篇 time-domain spee...
  • 1 篇 image segmentati...

机构

  • 4 篇 gomal univ fac e...
  • 4 篇 taif univ coll c...
  • 2 篇 chulalongkorn un...
  • 2 篇 princess nourah ...
  • 2 篇 gomal univ fac e...
  • 1 篇 telkom univ sch ...
  • 1 篇 int islamic univ...
  • 1 篇 int islamic univ...
  • 1 篇 univ ljubljana f...
  • 1 篇 univ sci & techn...
  • 1 篇 department of co...
  • 1 篇 king khalid univ...
  • 1 篇 princess nourah ...
  • 1 篇 king khalid univ...
  • 1 篇 auburn univ dept...
  • 1 篇 kth royal inst t...
  • 1 篇 department of me...
  • 1 篇 univ elect sci &...
  • 1 篇 int islamic univ...
  • 1 篇 pohang univ sci ...

作者

  • 6 篇 saleem nasir
  • 4 篇 bourouis sami
  • 2 篇 elmannai hela
  • 2 篇 gunawan teddy su...
  • 1 篇 tirry wouter
  • 1 篇 algarni abeer d.
  • 1 篇 li sen
  • 1 篇 amin mohammad am...
  • 1 篇 hilmes philip
  • 1 篇 guzzetti davide
  • 1 篇 ren yu
  • 1 篇 ullah rizwan
  • 1 篇 sierra-sosa dani...
  • 1 篇 lan tian
  • 1 篇 jeong yewon
  • 1 篇 gabriel luka l.
  • 1 篇 strake maximilia...
  • 1 篇 go byung-hyun
  • 1 篇 athi mrudula
  • 1 篇 rhouma delel

语言

  • 20 篇 英文
检索条件"主题词=convolutional encoder-decoder"
20 条 记 录,以下是1-10 订阅
排序:
convolutional encoder-decoder networks for pixel-wise ear detection and segmentation
收藏 引用
IET BIOMETRICS 2018年 第3期7卷 175-184页
作者: Emersic, Ziga Gabriel, Luka L. Struc, Vitomir Peer, Peter Univ Ljubljana Fac Comp & Informat Sci Vecna Pot 113 SL-1000 Ljubljana Slovenia KTH Royal Inst Technol SE-10044 Stockholm Sweden Univ Ljubljana Fac Elect Engn Trzaska 25 SL-1000 Ljubljana Slovenia
Object detection and segmentation represents the basis for many tasks in computer and machine vision. In biometric recognition systems the detection of the region-of-interest (ROI) is one of the most crucial steps in ... 详细信息
来源: 评论
Automatic colon polyp detection using convolutional encoder-decoder model  17
Automatic colon polyp detection using Convolutional Encoder-...
收藏 引用
17th IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)
作者: Bardhi, Ornela Sierra-Sosa, Daniel Garcia-Zapirain, Begonya Elmaghraby, Adel Univ Deusto eVIDA Lab Bilbao Spain Univ Louisville Comp Engn & Comp Sci Dept Louisville KY 40292 USA
Colorectal cancer is a leading cause of cancer deaths, estimated 696 thousand worldwide. Recent years have seen an increase of deep learning techniques and algorithms being used to detect colon polyps. In this work we... 详细信息
来源: 评论
CTSE-Net: Resource-efficient convolutional and TF-transformer network for speech enhancement
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2025年 317卷
作者: Saleem, Nasir Bourouis, Sami Elmannai, Hela Algarni, Abeer D. Gomal Univ Fac Engn & Technol Dept Elect Engn Dera Ismail Khan Pakistan Taif Univ Coll Comp & Informat Technol Dept Informat Technol Taif 21944 Saudi Arabia Princess Nourah Bint Abdulrahman Univ Coll Comp & Informat Sci Dept Informat Technol POB 84428 Riyadh 11671 Saudi Arabia
Deep Neural Networks (DNNs) are powerful tools in real-time speech enhancement (SE) since they automatically learn high-level feature representations from raw audio, resulting in significant advancements. Therefore, d... 详细信息
来源: 评论
MFFR-net: Multi-scale feature fusion and attentive recalibration network for deep neural speech enhancement
收藏 引用
DIGITAL SIGNAL PROCESSING 2025年 156卷
作者: Saleem, Nasir Bourouis, Sami Gomal Univ Fac Engn & Technol Dept Elect Engn Dera Ismail Khan Pakistan Taif Univ Coll Comp & Informat Technol Dept Informat Technol Taif 21944 Saudi Arabia
Deep neural networks (DNNs) have been successfully applied in advancing speech enhancement (SE), particularly in overcoming the challenges posed by nonstationary noisy backgrounds. In this context, multi-scale feature... 详细信息
来源: 评论
Temporally Dynamic Spiking Transformer Network for Speech Enhancement
收藏 引用
IEEE ACCESS 2024年 12卷 146513-146526页
作者: Alohali, Manal Abdullah Saleem, Nasir Rhouma, Delel Medani, Mohamed Elmannai, Hela Bourouis, Sami Princess Nourah Bint Abdulrahman Univ Coll Comp & Informat Sci Dept Informat Syst POB 84428 Riyadh 11671 Saudi Arabia Gomal Univ Fac Engn & Technol Dept Elect Engn Dera Ismail Khan 29050 Pakistan Qassim Univ Coll Comp Dept Comp Sci Buraydah 52571 Saudi Arabia King Khalid Univ Appl Coll Mahail Aseer Aseer 62529 Saudi Arabia Princess Nourah Bint Abdulrahman Univ Coll Comp & Informat Sci Dept Informat Technol POB 84428 Riyadh 11671 Saudi Arabia Taif Univ Coll Comp & Informat Technol Dept Informat Technol Taif 21944 Saudi Arabia
Speech enhancement (SE) aims to improve the quality and intelligibility of speech signals, particularly in the presence of noise or other distortions, to ensure reliable communication and robust speech recognition. De... 详细信息
来源: 评论
NSE-CATNet: Deep Neural Speech Enhancement Using convolutional Attention Transformer Network
收藏 引用
IEEE ACCESS 2023年 11卷 66979-66994页
作者: Saleem, Nasir Gunawan, Teddy Surya Kartiwi, Mira Nugroho, Bambang Setia Wijayanto, Inung Gomal Univ Fac Engn & Technol Dept Elect Engn Dera Ismail Khan 29050 Pakistan Int Islamic Univ Malaysia IIUM Elect & Comp Engn Dept Kuala Lumpur 53100 Malaysia Telkom Univ Sch Elect Engn Bandung 40257 Indonesia Int Islamic Univ Malaysia IIUM Informat Syst Dept Kuala Lumpur 53100 Malaysia
Speech enhancement (SE) is a critical aspect of various speech-processing applications. Recent research in this field focuses on identifying effective ways to capture the long-term contextual dependencies of speech si... 详细信息
来源: 评论
Real-Time Speech Enhancement Based on convolutional Recurrent Neural Network
收藏 引用
Intelligent Automation & Soft Computing 2023年 第2期35卷 1987-2001页
作者: S.Girirajan A.Pandian Department of Computer Science and Engineering School of ComputingSRM Institute of Science and EngineeringKattankulathurTamil NaduIndia
Speech enhancement is the task of taking a noisy speech input and pro-ducing an enhanced speech *** recent years,the need for speech enhance-ment has been increased due to challenges that occurred in various applicati... 详细信息
来源: 评论
A Model-data-driven Network Embedding Multidimensional Features for Tomographic SAR Imaging
A Model-data-driven Network Embedding Multidimensional Featu...
收藏 引用
IEEE Radar Conference (RadarConf)
作者: Ren, Yu Zhang, Xiaoling Zhan, Xu Shi, Jun Wei, Shunjun Zeng, Tianjiao Univ Elect Sci & Technol China Sch Informat & Commun Engn Chengdu Peoples R China
Deep learning (DL)-based tomographic SAR imaging algorithms are gradually being studied. Typically, they use an unfolding network to mimic the iterative calculation of the classical compressive sensing (CS)-based meth... 详细信息
来源: 评论
Compact deep neural networks for real-time speech enhancement on resource-limited devices
收藏 引用
SPEECH COMMUNICATION 2024年 156卷
作者: Wahab, Fazal E. Ye, Zhongfu Saleem, Nasir Ullah, Rizwan Univ Sci & Technol China Natl Engn Lab Speech & Language Informat Proc Hefei Anhui Peoples R China Gomal Univ Fac Engn & Technol Dept Elect Engn Dera Ismail Khan 29050 Pakistan Chulalongkorn Univ Dept Elect Engn Bangkok 10330 Thailand
In real-time applications, the aim of speech enhancement (SE) is to achieve optimal performance while ensuring computational efficiency and near-instant outputs. Many deep neural models have achieved optimal performan... 详细信息
来源: 评论
Time domain speech enhancement with CNN and time-attention transformer
收藏 引用
DIGITAL SIGNAL PROCESSING 2024年 147卷
作者: Saleem, Nasir Gunawan, Teddy Surya Dhahbi, Sami Bourouis, Sami Gomal Univ Fac Engn & Technol Dept Elect Engn Dera Ismail Khan 29050 Pakistan Int Islamic Univ Malaysia IIUM Elect & Comp Engn Dept Kuala Lumpur Malaysia Chulalongkorn Univ Dept Elect Engn Bangkok 10330 Thailand King Khalid Univ Coll Sci & Art Mahayil Dept Comp Sci Muhayil Aseer 62529 Saudi Arabia Taif Univ Coll Comp & Informat Technol Dept Informat Technol Taif 21944 Saudi Arabia
Speech enhancement in the time domain involves improving the quality and intelligibility of noisy speech by processing the waveform directly without the need for explicit feature extraction or domain transformation. D... 详细信息
来源: 评论