咨询与建议

限定检索结果

文献类型

  • 14 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 20 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 19 篇 工学
    • 11 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 4 篇 信息与通信工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 测绘科学与技术
    • 1 篇 软件工程
  • 6 篇 理学
    • 5 篇 物理学
    • 1 篇 数学
  • 2 篇 文学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 20 篇 convolutional en...
  • 7 篇 speech enhanceme...
  • 3 篇 deep learning
  • 2 篇 deep neural netw...
  • 2 篇 long short-term ...
  • 1 篇 uncertainty quan...
  • 1 篇 automatic speake...
  • 1 篇 tf-transformer
  • 1 篇 noise suppressio...
  • 1 篇 ear detection te...
  • 1 篇 physics-constrai...
  • 1 篇 image-pixels
  • 1 篇 object detection
  • 1 篇 transformer
  • 1 篇 fully convolutio...
  • 1 篇 t-f masking
  • 1 篇 biometric recogn...
  • 1 篇 dual-path transf...
  • 1 篇 time-domain spee...
  • 1 篇 image segmentati...

机构

  • 4 篇 gomal univ fac e...
  • 4 篇 taif univ coll c...
  • 2 篇 chulalongkorn un...
  • 2 篇 princess nourah ...
  • 2 篇 gomal univ fac e...
  • 1 篇 telkom univ sch ...
  • 1 篇 int islamic univ...
  • 1 篇 int islamic univ...
  • 1 篇 univ ljubljana f...
  • 1 篇 univ sci & techn...
  • 1 篇 department of co...
  • 1 篇 king khalid univ...
  • 1 篇 princess nourah ...
  • 1 篇 king khalid univ...
  • 1 篇 auburn univ dept...
  • 1 篇 kth royal inst t...
  • 1 篇 department of me...
  • 1 篇 univ elect sci &...
  • 1 篇 int islamic univ...
  • 1 篇 pohang univ sci ...

作者

  • 6 篇 saleem nasir
  • 4 篇 bourouis sami
  • 2 篇 elmannai hela
  • 2 篇 gunawan teddy su...
  • 1 篇 tirry wouter
  • 1 篇 algarni abeer d.
  • 1 篇 li sen
  • 1 篇 amin mohammad am...
  • 1 篇 hilmes philip
  • 1 篇 guzzetti davide
  • 1 篇 ren yu
  • 1 篇 ullah rizwan
  • 1 篇 sierra-sosa dani...
  • 1 篇 lan tian
  • 1 篇 jeong yewon
  • 1 篇 gabriel luka l.
  • 1 篇 strake maximilia...
  • 1 篇 go byung-hyun
  • 1 篇 athi mrudula
  • 1 篇 rhouma delel

语言

  • 20 篇 英文
检索条件"主题词=convolutional encoder-decoder"
20 条 记 录,以下是11-20 订阅
排序:
On the Robustness of Deep Learning-Based Speech Enhancement  21
On the Robustness of Deep Learning-Based Speech Enhancement
收藏 引用
21st IEEE International Conference on Machine Learning and Applications (IEEE ICMLA)
作者: Chhetri, Amit S. Hilmes, Philip Athi, Mrudula Shankar, Nikhil Amazon Inc Seattle WA 98109 USA
In this paper, we present the design of a robust deep neural network based speech enhancement (DNNSE) solution for joint noise reduction and dereverberation under real-world acoustic conditions. This makes our propose... 详细信息
来源: 评论
Physics-constrained deep learning for data assimilation of subsurface transport
收藏 引用
Energy and AI 2021年 第1期3卷 104-114页
作者: Haiyi Wu Rui Qiao Department of Mechanical Engineering Virginia TechBlacksburgVA 24061USA
Data assimilation of subsurface transport is important in many energy and environmental applications,but its solution is typically *** this work,we build physics-constrained deep learning models to predict the full-sc... 详细信息
来源: 评论
Control framework for collaborative robot using imitation learning-based teleoperation from human digital twin to robot digital twin*
收藏 引用
MECHATRONICS 2022年 第0期85卷
作者: Lee, Hyunsoo Kim, Seong Dae Amin, Mohammad Aman Ullah Al Kumoh Natl Inst Technol Sch Ind Engn Gumi South Korea Univ Tennessee Chattanooga Dept Engn Management & Technol Chattanooga TN USA Univ Texas Arlington Dept Ind Engn Arlington TX USA 615 McCallie Ave Chattanooga TN 37403 USA
Despite the deployment of collaborative robots for various industrial processes, their teaching and control remain comparatively difficult tasks compared with general industrial robots. Various imitation learning meth... 详细信息
来源: 评论
Gated dynamic convolutions with deep layer fusion for abstractive document summarization
收藏 引用
COMPUTER SPEECH AND LANGUAGE 2021年 66卷 101159-101159页
作者: Kwon, Hongseok Go, Byung-Hyun Park, Juhong Lee, Wonkee Jeong, Yewon Lee, Jong-Hyeok Pohang Univ Sci & Technol Dept Comp Sci & Engn 77 Cheongam Ro Pohang 37673 South Korea Pohang Univ Sci & Technol Grad Sch Artificial Intelligence Pohang South Korea
We present a novel abstractive document summarization based on the recently proposed dynamic convolutional encoder-decoder architectures. We address several aspects of summarization that are not well modeled by the ba... 详细信息
来源: 评论
Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images
收藏 引用
COMPUTATIONAL MATERIALS SCIENCE 2021年 196卷 110524-110524页
作者: Perera, Roberto Guzzetti, Davide Agrawal, Vinamra Auburn Univ Dept Aerosp Engn Auburn AL 36849 USA
Additively manufactured metals exhibit heterogeneous microstructure which dictates their material and failure properties. Experimental microstructural characterization techniques generate a large amount of data that r... 详细信息
来源: 评论
REDUNDANT convolutional NETWORK WITH ATTENTION MECHANISM FOR MONAURAL SPEECH ENHANCEMENT
REDUNDANT CONVOLUTIONAL NETWORK WITH ATTENTION MECHANISM FOR...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Lan, Tian Lyu, Yilan Hui, Guoqiang Mokhosi, Refuoe Li, Sen Liu, Qiao Univ Elect Sci & Technol China Sch Informat & Software Engn Chengdu Sichuan Peoples R China CETC Big Data Res Inst Co Ltd Guiyang Peoples R China
The redundant convolutional encoder-decoder network has proven useful in speech enhancement tasks. It can capture localized time-frequency details of speech signals through both the fully convolutional network structu... 详细信息
来源: 评论
Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks
收藏 引用
JOURNAL OF COMPUTATIONAL PHYSICS 2020年 403卷 1页
作者: Geneva, Nicholas Zabaras, Nicholas Univ Notre Dame Ctr Informat & Computat Sci 311 Cushing Hall Notre Dame IN 46556 USA
In recent years, deep learning has proven to be a viable methodology for surrogate modeling and uncertainty quantification for a vast number of physical systems. However, in their traditional form, such models can req... 详细信息
来源: 评论
SEPARATED NOISE SUPPRESSION AND SPEECH RESTORATION: LSTM-BASED SPEECH ENHANCEMENT IN TWO STAGES
SEPARATED NOISE SUPPRESSION AND SPEECH RESTORATION: LSTM-BAS...
收藏 引用
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)
作者: Strake, Maximilian Defraene, Bruno Fluyt, Kristoff Tirry, Wouter Fingscheidt, Tim Tech Univ Carolo Wilhelmina Braunschweig Inst Commun Technol D-38106 Braunschweig Germany NXP Semicond Prod Line Voice & Audio Solut B-3001 Leuven Belgium
Regression based on neural networks (NNs) has led to considerable advances in speech enhancement under non-stationary noise conditions. Nonetheless, speech distortions can be introduced when employing NNs trained to p... 详细信息
来源: 评论
Front-end speech enhancement for commercial speaker verification systems
收藏 引用
SPEECH COMMUNICATION 2018年 99卷 101-113页
作者: Eskimez, Sefik Emre Soufleris, Peter Duan, Zhiyao Heinzelman, Wendi Univ Rochester 500 Wilson Blvd Rochester NY 14627 USA Voice Biometr Grp 12 Penns Trail Newtown PA 18966 USA
Commercial speaker verification systems are an important component in security services for various domains, such as law enforcement, government, and finance. These systems are sensitive to noise present in the input ... 详细信息
来源: 评论
Improving Spatial Context in CNNs for Semantic Medical Image Segmentation  4
Improving Spatial Context in CNNs for Semantic Medical Image...
收藏 引用
4th IAPR Asian Conference on Pattern Recognition (ACPR)
作者: Mesbah, Russel McCane, Brendan Mills, Steven Robins, Anthony Univ Otago Dept Comp Sci Dunedin New Zealand
convolutional Neural Networks (CNNs) have been widely used in the semantic segmentation of medical images. Current CNN-based approaches don't fully exploit information about the local neighbourhood of the pixels b... 详细信息
来源: 评论