咨询与建议

限定检索结果

文献类型

  • 84 篇 期刊文献
  • 83 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 168 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 156 篇 工学
    • 93 篇 电气工程
    • 74 篇 计算机科学与技术...
    • 21 篇 信息与通信工程
    • 18 篇 软件工程
    • 11 篇 生物医学工程(可授...
    • 9 篇 仪器科学与技术
    • 9 篇 控制科学与工程
    • 7 篇 机械工程
    • 7 篇 电子科学与技术(可...
    • 7 篇 测绘科学与技术
    • 5 篇 光学工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 环境科学与工程(可...
    • 1 篇 船舶与海洋工程
    • 1 篇 生物工程
  • 41 篇 理学
    • 28 篇 物理学
    • 7 篇 地球物理学
    • 6 篇 数学
    • 2 篇 地理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 大气科学
  • 35 篇 医学
    • 28 篇 临床医学
    • 8 篇 特种医学
    • 1 篇 基础医学(可授医学...
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...

主题

  • 168 篇 convolutional sp...
  • 18 篇 sparse represent...
  • 16 篇 convolutional co...
  • 15 篇 dictionary learn...
  • 13 篇 convolution
  • 10 篇 encoding
  • 10 篇 image reconstruc...
  • 10 篇 convolutional ne...
  • 9 篇 deep learning
  • 9 篇 dictionaries
  • 9 篇 sparse coding
  • 7 篇 convolutional di...
  • 6 篇 admm
  • 5 篇 task analysis
  • 5 篇 deep unfolding
  • 5 篇 local processing
  • 5 篇 image coding
  • 5 篇 image denoising
  • 5 篇 feature extracti...
  • 5 篇 image classifica...

机构

  • 5 篇 los alamos natl ...
  • 3 篇 zhejiang univ co...
  • 3 篇 beihang univ sch...
  • 3 篇 beihang univ sch...
  • 2 篇 vrije univ bruss...
  • 2 篇 indian inst tech...
  • 2 篇 sichuan univ col...
  • 2 篇 pontificia univ ...
  • 2 篇 imec kapeldreef ...
  • 2 篇 yanshan univ sch...
  • 2 篇 dhanekula inst e...
  • 2 篇 tcg crest inst a...
  • 2 篇 beihang univ dep...
  • 2 篇 southeast univ s...
  • 2 篇 anhui polytech u...
  • 2 篇 aalto univ dept ...
  • 2 篇 indian inst tech...
  • 2 篇 los alamos natl ...
  • 2 篇 school of electr...
  • 2 篇 technion israel ...

作者

  • 11 篇 wohlberg brendt
  • 5 篇 elad michael
  • 5 篇 rodriguez paul
  • 4 篇 deng xin
  • 4 篇 papyan vardan
  • 4 篇 sulam jeremias
  • 4 篇 xu mai
  • 3 篇 he jingwei
  • 3 篇 veshki farshad g...
  • 3 篇 wang shengbiao
  • 3 篇 qian yuntao
  • 3 篇 romano yaniv
  • 3 篇 yu lei
  • 3 篇 giryes raja
  • 3 篇 xu jingyi
  • 3 篇 yang wen
  • 3 篇 wang jinjia
  • 3 篇 vorobyov sergiy ...
  • 2 篇 huang zhou
  • 2 篇 mandal manas k.

语言

  • 165 篇 英文
  • 3 篇 其他
检索条件"主题词=convolutional sparse coding"
168 条 记 录,以下是101-110 订阅
排序:
Learned convolutional sparse coding
Learned Convolutional Sparse Coding
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Hillel Sreter Raja Giryes School of Electrical Engineering Tel Aviv University Tel Aviv Israel
We propose a convolutional recurrent sparse auto-encoder model. The model consists of a sparse encoder, which is a convolutional extension of the learned ISTA (LISTA) method, and a linear convolutional decoder. Our st... 详细信息
来源: 评论
convolutional sparse-coding-based 3DV image super-resolution framework
收藏 引用
JOURNAL OF OPTICS-INDIA 2024年 第5期53卷 4930-4942页
作者: El-Shafai, Walid Abd El-Fatah, Mohamed A. Dessouky, Moawad I. Khalaf, Ashraf A. M. Abd El-Samie, Fathi E. Prince Sultan Univ Dept Comp Sci Secur Engn Lab Riyadh 11586 Saudi Arabia Menoufia Univ Fac Elect Engn Dept Elect & Elect Commun Engn Menoufia 32952 Egypt Minia Univ Fac Engn Dept Elect & Elect Commun Engn Al Minya 61111 Egypt Minia Univ Fac Engn Dept Elect Engn Al Minya Egypt Princess Nourah Bint Abdulrahman Univ Coll Comp & Informat Sci Dept Informat Technol POB 84428 Riyadh 11671 Saudi Arabia
Super-Resolution (SR) reconstruction of images has an extreme importance for vision applications. Numerous algorithms have been introduced for this purpose in recent years. This paper presents a cost-effective approac... 详细信息
来源: 评论
convolutional Analysis sparse coding for Multimodal Image Super-Resolution
IEEE SENSORS LETTERS
收藏 引用
IEEE SENSORS LETTERS 2024年 第6期8卷 1页
作者: Kumar, Kriti Majumdar, Angshul Kumar, A. Anil Chandra, M. Girish TCS Res Bangalore 560066 India Indraprastha Inst Informat Technol Delhi New Delhi 110020 India TCG CREST Inst Adv Intelligence Kolkata 700091 India
With multimodal imaging systems in place, recent research focus has been directed toward exploiting the knowledge from different imaging modalities to solve inverse problems, one example being image super-resolution, ... 详细信息
来源: 评论
convolutional Laplacian sparse coding
Convolutional Laplacian Sparse Coding
收藏 引用
IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)
作者: Luo, Xiyang Wohlberg, Brendt Univ Calif Los Angeles Dept Math Los Angeles CA 90024 USA Los Alamos Natl Lab Div Theoret Los Alamos NM USA
We propose to extend the the standard convolutional sparse representation by combining it with a non-local graph Laplacian term. This additional term is chosen to address some of the deficiencies of the l(1) norm in r... 详细信息
来源: 评论
convolutional neural networks analyzed via convolutional sparse coding
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2017年 第1期18卷
作者: Vardan Papyan Yaniv Romano Michael Elad Department of Computer Science Technion - Israel Institute of Technology Technion City Haifa Israel
convolutional neural networks (CNN) have led to many state-of-the-art results spanning through various fields. However, a clear and profound theoretical understanding of the forward pass, the core algorithm of CNN, is... 详细信息
来源: 评论
MDSC-Net: Multi-Modal Discriminative sparse coding Driven RGB-D Classification Network
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2025年 27卷 442-454页
作者: Xu, Jingyi Deng, Xin Fu, Yibing Xu, Mai Li, Shengxi Beihang Univ Sch Elect & Informat Engn Beijing 100191 Peoples R China Beihang Univ Shen Yuan Honors Coll Beijing 100191 Peoples R China
In this paper, we propose a novel sparsity-driven deep neural network to solve the RGB-D image classification problem. Different from existing classification networks, our network architecture is designed by drawing i... 详细信息
来源: 评论
Learning to Generalize Heterogeneous Representation for Cross-Modality Image Synthesis via Multiple Domain Interventions
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2025年 1-22页
作者: Huang, Yawen Huang, Huimin Zheng, Hao Li, Yuexiang Zheng, Feng Zhen, Xiantong Zheng, Yefeng Tencent Jarvis Res Ctr YouTu Lab Shenzhen Peoples R China Guangxi Med Univ Guangxi Key Lab Genom & Personalized Med Med AI Res MARS Grp Nanning 530021 Guangxi Peoples R China Southern Univ Sci & Technol Shenzhen Peoples R China United Imaging Healthcare Co Ltd Cent Res Inst Beijing Peoples R China Westlake Univ Med Artificial Intelligence Lab Hangzhou Peoples R China
Magnetic resonance imaging with modality diversity substantially increases productivity in routine diagnosis and advanced research. However, high inter-equipment variability and expensive examination cost remain as ke... 详细信息
来源: 评论
A deep learning approach for pose error prediction in parallel robots
收藏 引用
MEASUREMENT 2025年 第PartA期242卷
作者: Zhang, Han Zhu, Xin Yang, Ming Liu, Zhihua Cai, Chenguang Natl Inst Metrol Inst Mech & Acoust Beijing 100029 Peoples R China Guizhou Univ Coll Elect Engn Guiyang 550025 Peoples R China
Parallel robots are increasingly favored in industrial automation due to their high precision, stability, and rigidity in high-speed and heavy-load tasks. However, factors such as manufacturing tolerances, assembly de... 详细信息
来源: 评论
Efficient convolutional Forward Modeling and sparse coding in Multichannel Imaging  32
Efficient Convolutional Forward Modeling and Sparse Coding i...
收藏 引用
32nd European Signal Processing Conference (EUSIPCO)
作者: Wang, Han Kvich, Yhonatan Perez, Eduardo Roemer, Florian Eldar, Yonina C. Fraunhofer Inst Nondestruct Testing Appl AI Signal Proc & Data Anal Saarbrucken Germany Weizmann Inst Sci Fac Math & Comp Sci Rehovot Israel Tech Univ Ilmenau Dept Elect Measurements & Signal Proc Ilmenau Germany
This study considers the Block-Toeplitz structural properties inherent in traditional multichannel forward model matrices, using Full Matrix Capture (FMC) in ultrasonic testing as a case study. We propose an analytica... 详细信息
来源: 评论
Poisson2Poisson-sparse: Unsupervised Poisson noise image denoising based on sparse modeling
收藏 引用
SIGNAL PROCESSING 2025年 230卷
作者: Xiao, Lingzhi Wang, Shengbiao Zhang, Jun Wei, Jiuzhe Yang, Shihua Nanjing Univ Sci & Technol Sch Math & Stat Nanjing 210094 Jiangsu Peoples R China Beijing Inst Space Mech & Elect Beijing 100076 Peoples R China
Infields such as low-light photography, astronomical imaging, and low-dose computed tomography scanning, Poisson noise severely degrades image quality due to extremely low photon counts (averaging below one) and their... 详细信息
来源: 评论