咨询与建议

限定检索结果

文献类型

  • 84 篇 期刊文献
  • 83 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 168 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 156 篇 工学
    • 93 篇 电气工程
    • 74 篇 计算机科学与技术...
    • 21 篇 信息与通信工程
    • 18 篇 软件工程
    • 11 篇 生物医学工程(可授...
    • 9 篇 仪器科学与技术
    • 9 篇 控制科学与工程
    • 7 篇 机械工程
    • 7 篇 电子科学与技术(可...
    • 7 篇 测绘科学与技术
    • 5 篇 光学工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 环境科学与工程(可...
    • 1 篇 船舶与海洋工程
    • 1 篇 生物工程
  • 41 篇 理学
    • 28 篇 物理学
    • 7 篇 地球物理学
    • 6 篇 数学
    • 2 篇 地理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 大气科学
  • 35 篇 医学
    • 28 篇 临床医学
    • 8 篇 特种医学
    • 1 篇 基础医学(可授医学...
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...

主题

  • 168 篇 convolutional sp...
  • 18 篇 sparse represent...
  • 16 篇 convolutional co...
  • 15 篇 dictionary learn...
  • 13 篇 convolution
  • 10 篇 encoding
  • 10 篇 image reconstruc...
  • 10 篇 convolutional ne...
  • 9 篇 deep learning
  • 9 篇 dictionaries
  • 9 篇 sparse coding
  • 7 篇 convolutional di...
  • 6 篇 admm
  • 5 篇 task analysis
  • 5 篇 deep unfolding
  • 5 篇 local processing
  • 5 篇 image coding
  • 5 篇 image denoising
  • 5 篇 feature extracti...
  • 5 篇 image classifica...

机构

  • 5 篇 los alamos natl ...
  • 3 篇 zhejiang univ co...
  • 3 篇 beihang univ sch...
  • 3 篇 beihang univ sch...
  • 2 篇 vrije univ bruss...
  • 2 篇 indian inst tech...
  • 2 篇 sichuan univ col...
  • 2 篇 pontificia univ ...
  • 2 篇 imec kapeldreef ...
  • 2 篇 yanshan univ sch...
  • 2 篇 dhanekula inst e...
  • 2 篇 tcg crest inst a...
  • 2 篇 beihang univ dep...
  • 2 篇 southeast univ s...
  • 2 篇 anhui polytech u...
  • 2 篇 aalto univ dept ...
  • 2 篇 indian inst tech...
  • 2 篇 los alamos natl ...
  • 2 篇 school of electr...
  • 2 篇 technion israel ...

作者

  • 11 篇 wohlberg brendt
  • 5 篇 elad michael
  • 5 篇 rodriguez paul
  • 4 篇 deng xin
  • 4 篇 papyan vardan
  • 4 篇 sulam jeremias
  • 4 篇 xu mai
  • 3 篇 he jingwei
  • 3 篇 veshki farshad g...
  • 3 篇 wang shengbiao
  • 3 篇 qian yuntao
  • 3 篇 romano yaniv
  • 3 篇 yu lei
  • 3 篇 giryes raja
  • 3 篇 xu jingyi
  • 3 篇 yang wen
  • 3 篇 wang jinjia
  • 3 篇 vorobyov sergiy ...
  • 2 篇 huang zhou
  • 2 篇 mandal manas k.

语言

  • 165 篇 英文
  • 3 篇 其他
检索条件"主题词=convolutional sparse coding"
168 条 记 录,以下是111-120 订阅
排序:
convolutional sparse Modular Fusion Algorithm for Non-Rigid Registration of Visible-Infrared Images
收藏 引用
APPLIED SCIENCES-BASEL 2025年 第5期15卷 2508-2508页
作者: Luo, Tao Chen, Ning Zhu, Xianyou Yi, Heyuan Duan, Weiwen Zhejiang Univ Sci & Technol Sch Mech & Energy Engn Hangzhou 310023 Peoples R China
Existing image fusion algorithms involve extensive models and high computational demands when processing source images that require non-rigid registration, which may not align with the practical needs of engineering a... 详细信息
来源: 评论
Discriminative convolution sparse coding for robust image classification
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2022年 第28期81卷 40849-40870页
作者: Nozaripour, Ali Soltanizadeh, Hadi Semnan Univ Dept Elect Comp Engn Semnan *** Iran Semnan Univ Fac Elect Comp Engn Semnan *** Iran
convolutional sparse coding (CSC) is a popular model in the signal and image processing communities, resolving some limitations of the traditional patch-based sparse representations. However, most existing CSC algorit... 详细信息
来源: 评论
Efficient Approximate Online convolutional Dictionary Learning
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2023年 9卷 1165-1175页
作者: Veshki, Farshad G. Vorobyov, Sergiy A. Aalto Univ Dept Informat & Commun Engn Espoo 02150 Finland Nokia Espoo 11351 Finland
Most existing convolutional dictionary learning (CDL) algorithms are based on batch learning, where the dictionary filters and the convolutional sparse representations are optimized in an alternating manner using a tr... 详细信息
来源: 评论
Multi-Modal convolutional Dictionary Learning
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2022年 31卷 1325-1339页
作者: Gao, Fangyuan Deng, Xin Xu, Mai Xu, Jingyi Dragotti, Pier Luigi Beihang Univ Sch Cyber Sci & Technol Beijing 100191 Peoples R China Beihang Univ Dept Elect Informat Engn Beijing 100191 Peoples R China Imperial Coll London Dept Elect & Elect Engn London SW7 2AZ England
convolutional dictionary learning has become increasingly popular in signal and image processing for its ability to overcome the limitations of traditional patch-based dictionary learning. Although most studies on con... 详细信息
来源: 评论
A two-stage convolutional sparse prior model for image restoration
收藏 引用
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION 2017年 第Oct.期48卷 268-280页
作者: Xiong, Jiaojiao Liu, Qiegen Wang, Yuhao Xu, Xiaoling Nanchang Univ Dept Elect Informat Engn Nanchang Jiangxi Peoples R China
Image restoration (IR) from noisy, blurred or/and incomplete observed measurement is one of the important tasks in image processing community. Image prior is of utmost importance for recovering a high quality image. I... 详细信息
来源: 评论
Tensor convolutional Dictionary Learning With CP Low-Rank Activations
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2022年 70卷 785-796页
作者: Humbert, Pierre Oudre, Laurent Vayatis, Nicolas Audiffren, Julien Univ Paris Saclay ENS Paris Saclay CNRS Ctr Borelli F-91190 Gif Sur Yvette France Univ Fribourg Cognit & Percept Lab CH-1700 Fribourg Switzerland
In this paper, we propose to extend the standard convolutional Dictionary Learning problem to a tensor representation where the activations are constrained to be "low-rank" through a Canonical Polyadic decom... 详细信息
来源: 评论
LidarCSNet: A Deep convolutional Compressive Sensing Reconstruction Framework for 3D Airborne Lidar Point Cloud
收藏 引用
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 2021年 180卷 313-334页
作者: Shinde, Rajat C. Durbha, Surya S. Potnis, Abhishek, V Indian Inst Technol Ctr Studies Resources Engn CSRE Mumbai Maharashtra India
Lidar scanning is a widely used surveying and mapping technique ranging across remote-sensing applications involving topological, and topographical information. Typically, lidar point clouds, unlike images, lack inher... 详细信息
来源: 评论
Generation model meets swin transformer for unsupervised low-dose CT reconstruction
收藏 引用
MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2024年 第2期5卷 025005页
作者: Li, Yu Sun, Xueqin Wang, Sukai Qin, Yingwei Pan, Jinxiao Chen, Ping North Univ China Dept Informat & Commun Engn Taiyuan Peoples R China North Univ China State Key Lab Elect Testing Technol Taiyuan Peoples R China
Computed tomography (CT) has evolved into an indispensable tool for clinical diagnosis. Reducing radiation dose crucially minimizes adverse effects but may introduce noise and artifacts in reconstructed images, affect... 详细信息
来源: 评论
Multilayer convolutional sparse Modeling: Pursuit and Dictionary Learning
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2018年 第15期66卷 4090-4104页
作者: Sulam, Jeremias Papyan, Vardan Romano, Yaniv Elad, Michael Technion Israel Inst Technol Dept Comp Sci IL-3200003 Haifa Israel Stanford Univ Dept Stat Stanford CA 94305 USA
The recently proposed multilayer convolutional sparse coding (ML-CSC) model, consisting of a cascade of convolutional sparse layers, provides a new interpretation of convolutional neural networks (CNNs). Under this fr... 详细信息
来源: 评论
First- and Second-Order Methods for Online convolutional Dictionary Learning
收藏 引用
SIAM JOURNAL ON IMAGING SCIENCES 2018年 第2期11卷 1589-1628页
作者: Liu, Jialin Garcia-Cardona, Cristina Wohlbereg, Brendt Yin, Wotao UCLA Dept Math Los Angeles CA 90095 USA Los Alamos Natl Lab CCS Div Los Alamos NM 87545 USA Los Alamos Natl Lab Theoret Div Los Alamos NM 87545 USA
convolutional sparse representations are a form of sparse representation with a structured, translation-invariant dictionary. Most convolutional dictionary learning algorithms to date operate in batch mode, requiring ... 详细信息
来源: 评论