咨询与建议

限定检索结果

文献类型

  • 84 篇 期刊文献
  • 83 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 168 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 156 篇 工学
    • 93 篇 电气工程
    • 74 篇 计算机科学与技术...
    • 21 篇 信息与通信工程
    • 18 篇 软件工程
    • 11 篇 生物医学工程(可授...
    • 9 篇 仪器科学与技术
    • 9 篇 控制科学与工程
    • 7 篇 机械工程
    • 7 篇 电子科学与技术(可...
    • 7 篇 测绘科学与技术
    • 5 篇 光学工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 环境科学与工程(可...
    • 1 篇 船舶与海洋工程
    • 1 篇 生物工程
  • 41 篇 理学
    • 28 篇 物理学
    • 7 篇 地球物理学
    • 6 篇 数学
    • 2 篇 地理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 大气科学
  • 35 篇 医学
    • 28 篇 临床医学
    • 8 篇 特种医学
    • 1 篇 基础医学(可授医学...
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...

主题

  • 168 篇 convolutional sp...
  • 18 篇 sparse represent...
  • 16 篇 convolutional co...
  • 15 篇 dictionary learn...
  • 13 篇 convolution
  • 10 篇 encoding
  • 10 篇 image reconstruc...
  • 10 篇 convolutional ne...
  • 9 篇 deep learning
  • 9 篇 dictionaries
  • 9 篇 sparse coding
  • 7 篇 convolutional di...
  • 6 篇 admm
  • 5 篇 task analysis
  • 5 篇 deep unfolding
  • 5 篇 local processing
  • 5 篇 image coding
  • 5 篇 image denoising
  • 5 篇 feature extracti...
  • 5 篇 image classifica...

机构

  • 5 篇 los alamos natl ...
  • 3 篇 zhejiang univ co...
  • 3 篇 beihang univ sch...
  • 3 篇 beihang univ sch...
  • 2 篇 vrije univ bruss...
  • 2 篇 indian inst tech...
  • 2 篇 sichuan univ col...
  • 2 篇 pontificia univ ...
  • 2 篇 imec kapeldreef ...
  • 2 篇 yanshan univ sch...
  • 2 篇 dhanekula inst e...
  • 2 篇 tcg crest inst a...
  • 2 篇 beihang univ dep...
  • 2 篇 southeast univ s...
  • 2 篇 anhui polytech u...
  • 2 篇 aalto univ dept ...
  • 2 篇 indian inst tech...
  • 2 篇 los alamos natl ...
  • 2 篇 school of electr...
  • 2 篇 technion israel ...

作者

  • 11 篇 wohlberg brendt
  • 5 篇 elad michael
  • 5 篇 rodriguez paul
  • 4 篇 deng xin
  • 4 篇 papyan vardan
  • 4 篇 sulam jeremias
  • 4 篇 xu mai
  • 3 篇 he jingwei
  • 3 篇 veshki farshad g...
  • 3 篇 wang shengbiao
  • 3 篇 qian yuntao
  • 3 篇 romano yaniv
  • 3 篇 yu lei
  • 3 篇 giryes raja
  • 3 篇 xu jingyi
  • 3 篇 yang wen
  • 3 篇 wang jinjia
  • 3 篇 vorobyov sergiy ...
  • 2 篇 huang zhou
  • 2 篇 mandal manas k.

语言

  • 165 篇 英文
  • 3 篇 其他
检索条件"主题词=convolutional sparse coding"
168 条 记 录,以下是71-80 订阅
排序:
LEARNED convolutional sparse coding
LEARNED CONVOLUTIONAL SPARSE CODING
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Sreter, Hillel Giryes, Raja Tel Aviv Univ Sch Elect Engn Tel Aviv Israel
We propose a convolutional recurrent sparse auto-encoder model. The model consists of a sparse encoder, which is a convolutional extension of the learned ISTA (LISTA) method, and a linear convolutional decoder. Our st... 详细信息
来源: 评论
COUPLED FEATURE LEARNING VIA STRUCTURED convolutional sparse coding FOR MULTIMODAL IMAGE FUSION  47
COUPLED FEATURE LEARNING VIA STRUCTURED CONVOLUTIONAL SPARSE...
收藏 引用
47th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Veshki, Farshad G. Vorobyov, Sergiy A. Aalto Univ Dept Signal Proc & Acoust Espoo Finland
A novel method for learning correlated features in multimodal images based on convolutional sparse coding with applications to image fusion is presented. In particular, the correlated features are captured as coupled ... 详细信息
来源: 评论
Image Denoising Using convolutional sparse coding Network with Dry Friction  16th
Image Denoising Using Convolutional Sparse Coding Network wi...
收藏 引用
16th Asian Conference on Computer Vision (ACCV)
作者: Zhang, Yali Wang, Xiaofan Wang, Fengpin Wang, Jinjia Yanshan Univ Sch Informat Sci & Engn Qinhuangdao 066004 Peoples R China Yanshan Univ Hebei Key Lab Informat Transmiss & Signal Proc Qinhuangdao 066004 Peoples R China
convolutional sparse coding model has been successfully used in some tasks such as signal or image processing and classification. The recently proposed supervised convolutional sparse coding network (CSCNet) model bas... 详细信息
来源: 评论
IMAGE DE-RAINING VIA RDL: WHEN REWEIGHTED convolutional sparse coding MEETS DEEP LEARNING
IMAGE DE-RAINING VIA RDL: WHEN REWEIGHTED CONVOLUTIONAL SPAR...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: He, Jingwei Yu, Lei Yang, Wen Wuhan Univ Sch Elect & Informat Wuhan 430072 Peoples R China
Over the past few decades, image de-raining has witnessed substantial progress due to the development of priors and deep learning based methods. However, few studies combine the merits of both. In this paper, we argue... 详细信息
来源: 评论
HIGH ACCURACY COMPRESSIVE CHROMO-TOMOGRAPHY RECONSTRUCTION VIA convolutional sparse coding
HIGH ACCURACY COMPRESSIVE CHROMO-TOMOGRAPHY RECONSTRUCTION V...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Li, Baoping Zhang, Xuesong Jiang, Jing Chen, Yuzhong Zhang, Qi Ming, Anlong Beijing Univ Posts & Telecommun Beijing 100876 Peoples R China Beijing Union Univ Dept Commun Engn Beijing 100101 Peoples R China
Over the last decade various compressive snapshot hyperspectral imaging methods have been proposed. The limited reconstruction quality from severely compressed measurements, however, has been a practical barrier to re... 详细信息
来源: 评论
EFFICIENT convolutional sparse coding
EFFICIENT CONVOLUTIONAL SPARSE CODING
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Wohlberg, Brendt Los Alamos Natl Lab Div Theoret Los Alamos NM 87545 USA
When applying sparse representation techniques to images, the standard approach is to independently compute the representations for a set of overlapping image patches. This method performs very well in a variety of ap... 详细信息
来源: 评论
MATCHING PURSUIT BASED convolutional sparse coding
MATCHING PURSUIT BASED CONVOLUTIONAL SPARSE CODING
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Plaut, Elad Giryes, Raja Tel Aviv Univ Sch Elect Engn Tel Aviv Israel
convolutional sparse coding using the l(0,infinity )norm has been described as "a problem that operates locally while thinking globally". In this paper, we present a matching pursuit based greedy algorithm s... 详细信息
来源: 评论
sparse-VIEW CT RECONSTRUCTION VIA convolutional sparse coding  16
SPARSE-VIEW CT RECONSTRUCTION VIA CONVOLUTIONAL SPARSE CODIN...
收藏 引用
16th IEEE International Symposium on Biomedical Imaging (ISBI)
作者: Bao, Peng Xia, Wenjun Yang, Kang Zhou, Jiliu Zhang, Yi Sichuan Univ Coll Comp Sci Chengdu 610065 Sichuan Peoples R China
Traditional dictionary learning based CT reconstruction methods are patch-based and the features learned with these methods often contain shifted versions of the same features. To deal with these problems, the convolu... 详细信息
来源: 评论
A SELF-SUPERVISED HYPERSPECTRAL IMAGE RESTORATION METHOD BASED ON convolutional sparse coding AND SUPERPIXEL SEGMENTATION
A SELF-SUPERVISED HYPERSPECTRAL IMAGE RESTORATION METHOD BAS...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Jiang, Zhongshun Zhu, Honglin Qiu, Yi Qian, Yuntao Zhejiang Univ Coll Comp Sci Hangzhou Peoples R China Huzhou Univ Coll Engn Huzhou Peoples R China
Denoising is a common preprocessing step before hyperspectral image (HSI) analysis and interpretation. Since noisefree training samples are not required, self-supervised deep learning is becoming a new research trend ... 详细信息
来源: 评论
Adaptive Coded Aperture Design by Motion Estimation using convolutional sparse coding in Compressive Spectral Video Sensing  8
Adaptive Coded Aperture Design by Motion Estimation using Co...
收藏 引用
8th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
作者: Diaz, N. Noriega-Wandurraga, C. Basarab, A. Tourneret, J-Y Arguelle, H. Univ Ind Santander UIS Dept Elect Engn Bucaramanga 680002 Colombia UIS Dept Math Bucaramanga 680002 Colombia Univ Toulouse IRIT CNRS UMR 5505 F-31062 Toulouse France Univ Toulouse IRIT INP ENSEEIHT TeSA F-31071 Toulouse France UIS Dept Comp Sci Bucaramanga 680002 Colombia
This paper proposes a new motion estimation method based on convolutional sparse coding to adaptively design the colored-coded apertures in static and dynamic spectral videos. The motion in a spectral video is estimat... 详细信息
来源: 评论