咨询与建议

限定检索结果

文献类型

  • 23 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 29 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 29 篇 工学
    • 15 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 6 篇 信息与通信工程
    • 5 篇 机械工程
    • 4 篇 水利工程
    • 2 篇 土木工程
    • 2 篇 石油与天然气工程
    • 2 篇 环境科学与工程(可...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 控制科学与工程
    • 1 篇 化学工程与技术
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
    • 1 篇 网络空间安全
  • 7 篇 理学
    • 2 篇 物理学
    • 2 篇 地球物理学
    • 2 篇 生物学
    • 1 篇 化学
  • 2 篇 医学
    • 2 篇 临床医学
    • 1 篇 特种医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 29 篇 convolutional va...
  • 6 篇 deep learning
  • 4 篇 anomaly detectio...
  • 3 篇 feature extracti...
  • 2 篇 fault diagnosis
  • 2 篇 variational auto...
  • 2 篇 deep neural netw...
  • 2 篇 generative adver...
  • 2 篇 generative model
  • 2 篇 joint hydrogeoph...
  • 2 篇 electroencephalo...
  • 2 篇 diagnosis
  • 2 篇 partial discharg...
  • 2 篇 latent space
  • 2 篇 spectral topogra...
  • 2 篇 hydrogenerators
  • 2 篇 robustness
  • 2 篇 training
  • 1 篇 order analysis
  • 1 篇 unsupervised fil...

机构

  • 2 篇 southeast univ s...
  • 2 篇 univ san francis...
  • 2 篇 univ hawaii mano...
  • 2 篇 nanjing univ sch...
  • 2 篇 nanjing forestry...
  • 2 篇 stanford univ de...
  • 2 篇 univ hawaii mano...
  • 1 篇 ireq hydro quebe...
  • 1 篇 1ireq hydro queb...
  • 1 篇 budapest univ te...
  • 1 篇 sichuan univ col...
  • 1 篇 north china elec...
  • 1 篇 kyushu inst tech...
  • 1 篇 cuny city coll d...
  • 1 篇 sichuan univ col...
  • 1 篇 univ british col...
  • 1 篇 univ wisconsin m...
  • 1 篇 wuhan univ sch c...
  • 1 篇 nanjing univ sch...
  • 1 篇 chungbuk natl un...

作者

  • 4 篇 kang xueyuan
  • 3 篇 shi xiaoqing
  • 3 篇 wu jichun
  • 3 篇 zemouri ryad
  • 2 篇 hudon claude
  • 2 篇 levesque melanie
  • 2 篇 tahan antoine
  • 2 篇 longo luca
  • 2 篇 amyot normand
  • 2 篇 kokoko olivier
  • 2 篇 kitanidis peter ...
  • 2 篇 lee jonghyun
  • 2 篇 ahmed taufique
  • 2 篇 agrawal purvi
  • 2 篇 kokkinaki amalia
  • 2 篇 ganapathy sriram
  • 2 篇 yan xiaoan
  • 1 篇 xiang weixi
  • 1 篇 yoon hongkyu
  • 1 篇 she daoming

语言

  • 26 篇 英文
  • 3 篇 其他
检索条件"主题词=convolutional variational autoencoder"
29 条 记 录,以下是21-30 订阅
排序:
Unsupervised Pre-Training of Imbalanced Data for Identification of Wafer Map Defect Patterns
收藏 引用
IEEE ACCESS 2021年 9卷 52352-52363页
作者: Shon, Ho Sun Batbaatar, Erdenebileg Cho, Wan-Sup Choi, Seong Gon Chungbuk Natl Univ Res Inst Comp & Informat Commun Cheongju 28644 South Korea Chungbuk Natl Univ Sch Elect Comp Engn Cheongju 28644 South Korea Chungbuk Natl Univ Dept Management Informat Syst Cheongju 28644 South Korea Chungbuk Natl Univ Sch Informat & Commun Engn Cheongju 28644 South Korea
Visual defect inspection and classification are significant steps of most manufacturing processes in the semiconductor and electronics industries. Known and unknown defects on wafer maps tend to cluster, and these spa... 详细信息
来源: 评论
Comparison of an Automatic Classification of Partial Dischage Patterns for Large Hydrogenerator
Comparison of an Automatic Classification of Partial Dischag...
收藏 引用
IEEE International Conference on Prognostics and Health Management (ICPHM)
作者: Kokoko, Olivier Hudon, Claude Levesque, Melanie Amyot, Normand Zemouri, Ryad IREQ Hydro Quebec Varennes PQ Canada 1IREQ Hydro Quebec Varennes PQ Canada CNAM CEDRIC Lab Paris France
More and more scientific disciplines are using deep techniques for the automatic classification of massive high dimensionality unlabeled data. Among these disciplines, the classification of partial discharge (PD) patt... 详细信息
来源: 评论
Learning Latent Representation of Freeway Traffic Situations from Occupancy Grid Pictures Using variational autoencoder
收藏 引用
ENERGIES 2021年 第17期14卷 5232-5232页
作者: Rakos, Oliver Becsi, Tamas Aradi, Szilard Gaspar, Peter Budapest Univ Technol & Econ Dept Control Transportat & Vehicle Syst H-1111 Budapest Hungary Inst Comp Sci & Control Syst & Control Lab H-1111 Budapest Hungary
Several problems can be encountered in the design of autonomous vehicles. Their software is organized into three main layers: perception, planning, and actuation. The planning layer deals with the sort and long-term s... 详细信息
来源: 评论
Deep generative model for probabilistic wind speed and wind power estimation at a wind farm
收藏 引用
ENERGY SCIENCE & ENGINEERING 2022年 第6期10卷 1855-1873页
作者: Salazar, Andres A. Zheng, Jiafeng Che, Yuzhang Xiao, Feng Tokyo Inst Technol Dept Mech Engn Tokyo Japan Chengdu Univ Informat Technol Coll Atmospher Sci Chengdu 610225 Peoples R China
This work introduces a novel method to generate probabilistic hub-height wind speed forecasts aimed at power output prediction. We employ state-of-the-art convolutional variational autoencoders (CVAEs) trained with hi... 详细信息
来源: 评论
Integration of Deep Learning-Based Inversion and Upscaled Mass-Transfer Model for DNAPL Mass-Discharge Estimation and Uncertainty Assessment
收藏 引用
WATER RESOURCES RESEARCH 2022年 第10期58卷 e2022WR033277-e2022WR033277页
作者: Kang, Xueyuan Kokkinaki, Amalia Shi, Xiaoqing Yoon, Hongkyu Lee, Jonghyun Kitanidis, Peter K. Wu, Jichun Nanjing Univ Sch Earth Sci & Engn Minist Educ Key Lab Suficial Geochem Nanjing Peoples R China Univ San Francisco Dept Environm Sci San Francisco CA USA Sandia Natl Labs Geosci Res & Applicat POB 5800 Albuquerque NM 87185 USA Univ Hawaii Manoa Dept Civil & Environm Engn Honolulu HI 96822 USA Univ Hawaii Manoa Water Resources Res Ctr Honolulu HI 96822 USA Stanford Univ Dept Civil & Environm Engn Stanford CA 94305 USA
The challenges posed by high-resolution characterization of dense nonaqueous phase liquid (DNAPL) source zone architecture (SZA) have motivated the development of simpler upscaled models that rely on domain-averaged m... 详细信息
来源: 评论
Characterization of the non-Gaussian hydraulic conductivity field via deep learning-based inversion of hydraulic-head and self-potential data
收藏 引用
JOURNAL OF HYDROLOGY 2022年 610卷
作者: Han, Zheng Kang, Xueyuan Wu, Jichun Shi, Xiaoqing Nanjing Univ Sch Earth Sci & Engn Key Lab Surficial Geochem Minist Educ Nanjing 210023 Peoples R China
Accurate characterization of the spatial heterogeneity of hydraulic properties such as hydraulic conductivity (K) is essential for understanding groundwater flow and contaminant transport processes. Deep learning-base... 详细信息
来源: 评论
Normal Appearance autoencoder for Lung Cancer Detection and Segmentation  22nd
Normal Appearance Autoencoder for Lung Cancer Detection and ...
收藏 引用
10th International Workshop on Machine Learning in Medical Imaging (MLMI) / 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
作者: Astaraki, Mehdi Toma-Dasu, Iuliana Smedby, Orjan Wang, Chunliang KTH Royal Inst Technol Dept Biomed Engn & Hlth Syst Halsovagen 11C S-14157 Huddinge Sweden Karolinska Univ Sjukhuset Karolinska Inst Dept Oncol Pathol S-17176 Solna Sweden
One of the major differences between medical doctor training and machine learning is that doctors are trained to recognize normal/healthy anatomy first. Knowing the healthy appearance of anatomy structures helps docto... 详细信息
来源: 评论
DEEP variational FILTER LEARNING MODELS FOR SPEECH RECOGNITION  44
DEEP VARIATIONAL FILTER LEARNING MODELS FOR SPEECH RECOGNITI...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Agrawal, Purvi Ganapathy, Sriram Indian Inst Sci Elect Engn LEAP Lab Bangalore Karnataka India
We present a novel approach to derive robust speech representations for automatic speech recognition (ASR) systems. The proposed method uses an unsupervised data-driven modulation filter learning approach that preserv... 详细信息
来源: 评论
Unsupervised Raw Waveform Representation Learning for ASR  20
Unsupervised Raw Waveform Representation Learning for ASR
收藏 引用
Interspeech Conference
作者: Agrawal, Purvi Ganapathy, Sriram Indian Inst Sci Learning & Extract Acoust Patterns LEAP Lab Dept Elect Engn Bengaluru 560012 India
In this paper, we propose a deep representation learning approach using the raw speech waveform in an unsupervised learning paradigm. The first layer of the proposed deep model performs acoustic filtering while the su... 详细信息
来源: 评论