The design of communication protocols in the Mobile Ad hoc Networks (MANET) is challenging due to limited wireless transmission ranges of node mobility, limited power resources, and limited physical security. The adva...
详细信息
ISBN:
(纸本)9781479985470
The design of communication protocols in the Mobile Ad hoc Networks (MANET) is challenging due to limited wireless transmission ranges of node mobility, limited power resources, and limited physical security. The advantages of MANET include simple and fast deployment, robustness, adaptive and self-organizing networks. Nonetheless, routing protocols are important operations for communication among wireless devices. Assuring secure routing protocols is challenging since MANET wireless networks are highly vulnerable to security attacks. Most traditional routing protocols and message authentication designs do not address security, and are mainly based on a mutual trust relationship among nodes. This paper therefore proposes a new chaos-based keyed hash function that can be used for communication protocols in MANET. The proposed chaotic map realizes an absolute-value nonlinearity, which offers robust chaos over wide parameter spaces, i.e. high degree of randomness through chaoticity measurements using Lyapunov exponent. The proposed keyed hash function structure is compact through the use of a single stage chaos-based topology. Hash function operations involve an initial stage when the chaotic map accepts input message and initial conditions, and a hashing stage where alterable-length hash values are generated iteratively. Hashing performances are evaluated in terms of original message condition changes, statistical analyses, and collision analyses. Results of hashing performances show that the mean changed probabilities are very close to 50%, and the mean changed bit number is also close to a half of hash value lengths. The proposed keyed hash function enhances the collision resistance, comparing to typical MD5 and SHA1, and is faster than other complicated chaos-based approaches.
In this paper, we study the sensor deployment pattern problem in cyber physical systems. When designing the sensor deployment pattern, the network lifetime maximization while covering the given area/targets and forwar...
详细信息
In this paper, we study the sensor deployment pattern problem in cyber physical systems. When designing the sensor deployment pattern, the network lifetime maximization while covering the given area/targets and forwarding sensor data to a sink node is an important issue. In order to prolong the network lifetime by balancing energy depletion across all sensors, we propose a novel nonuniform sensor distribution strategy. Since sensors located closer to the sink are more involved in data forwarding, sensor densities in different areas should be varied according to the distance to the sink. Based on the nonuniform sensor distribution, we propose sensor deployment patterns to satisfy the coverage and connectivity requirements and prolong the network lifetime. A numerical computation is performed to validate and compare the effectiveness of the proposed deployment patterns.
Due to their low cost and small form factors, a large number of sensor nodes can be deployed in redundant fashion in dense sensor networks. The availability of redundant nodes increases network lifetime as well as net...
详细信息
Due to their low cost and small form factors, a large number of sensor nodes can be deployed in redundant fashion in dense sensor networks. The availability of redundant nodes increases network lifetime as well as network fault tolerance. It is, however, undesirable to keep all the sensor nodes active at all times for sensing and communication. An excessive number of active nodes leads to higher energy consumption and it places more demand on the limited network bandwidth. We present an efficient technique for the selection of active sensor nodes in dense sensor networks. The active node selection procedure is aimed at providing the highest possible coverage of the sensor field, i.e., the surveillance area. It also assures network connectivity for routing and information dissemination. We first show that the coverage-centric active nodes selection problem is NP-complete. We then present a distributed approach based on the concept of a connected dominating set (CDS). We prove that the set of active nodes selected by our approach provides full coverage and connectivity. We also describe an optimal coverage-centric centralized approach based on integer linear programming. We present simulation results obtained using an ns2 implementation of the proposed technique.
暂无评论