咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 1 篇 different tracks
  • 1 篇 centralisation s...
  • 1 篇 particle filteri...
  • 1 篇 neural nets
  • 1 篇 target tracking
  • 1 篇 kalman filters
  • 1 篇 traditional baye...
  • 1 篇 sliding window
  • 1 篇 bayes methods
  • 1 篇 data generator
  • 1 篇 probability
  • 1 篇 randomly initial...
  • 1 篇 data-driven xgbo...
  • 1 篇 data-driven appr...
  • 1 篇 learning (artifi...
  • 1 篇 dxgbf
  • 1 篇 end-to-end mappi...
  • 1 篇 data-driven rand...
  • 1 篇 data-driven meth...

机构

  • 1 篇 univ elect sci &...

作者

  • 1 篇 zhai bowen
  • 1 篇 ju hao
  • 1 篇 li ming
  • 1 篇 kong lingjiang
  • 1 篇 yi wei

语言

  • 1 篇 英文
检索条件"主题词=data-driven random-forest-based filter"
1 条 记 录,以下是1-10 订阅
排序:
data-driven XGBoost-based filter for target tracking
收藏 引用
JOURNAL OF ENGINEERING-JOE 2019年 第20期2019卷 6683-6687页
作者: Zhai, Bowen Yi, Wei Li, Ming Ju, Hao Kong, Lingjiang Univ Elect Sci & Technol China Sch Informat & Commun Engn Chengdu Sichuan Peoples R China
In recent years, the data-driven approach has been introduced in the field of target tracking as a powerful tool developing the end-to-end mapping relationship between input features and outputs. Typically, in data-dr... 详细信息
来源: 评论