咨询与建议

限定检索结果

文献类型

  • 78 篇 期刊文献
  • 60 篇 会议

馆藏范围

  • 138 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 130 篇 工学
    • 124 篇 计算机科学与技术...
    • 44 篇 电气工程
    • 28 篇 软件工程
    • 9 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 3 篇 网络空间安全
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 生物医学工程(可授...
  • 14 篇 理学
    • 4 篇 数学
    • 4 篇 生物学
    • 3 篇 化学
    • 1 篇 物理学
    • 1 篇 天文学
    • 1 篇 地球物理学
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 138 篇 data-intensive c...
  • 22 篇 cloud computing
  • 21 篇 mapreduce
  • 20 篇 big data
  • 10 篇 hadoop
  • 8 篇 high-performance...
  • 7 篇 high performance...
  • 5 篇 parallel process...
  • 5 篇 data management
  • 5 篇 parallel computi...
  • 5 篇 distributed comp...
  • 4 篇 remote sensing i...
  • 4 篇 computational mo...
  • 4 篇 scientific compu...
  • 4 篇 e-science
  • 3 篇 distributed syst...
  • 3 篇 deep learning
  • 3 篇 external sorting
  • 3 篇 task analysis
  • 3 篇 performance opti...

机构

  • 8 篇 chinese acad sci...
  • 6 篇 texas tech univ ...
  • 5 篇 univ sydney sch ...
  • 4 篇 chinese acad sci...
  • 4 篇 iit dept comp sc...
  • 4 篇 johns hopkins un...
  • 4 篇 univ cent florid...
  • 3 篇 hunan univ sci &...
  • 3 篇 china univ geosc...
  • 3 篇 johns hopkins un...
  • 2 篇 univ calif river...
  • 2 篇 coll william & m...
  • 2 篇 univ minnesota d...
  • 2 篇 ohio state univ ...
  • 2 篇 univ calif irvin...
  • 2 篇 los alamos natl ...
  • 2 篇 univ sydney sch ...
  • 2 篇 china univ geosc...
  • 2 篇 univ tromso ctr ...
  • 2 篇 wuhan univ techn...

作者

  • 11 篇 wang lizhe
  • 9 篇 chen yong
  • 9 篇 ranjan rajiv
  • 8 篇 ma yan
  • 5 篇 chen dan
  • 4 篇 burns randal
  • 4 篇 zomaya albert y.
  • 4 篇 rafique m. musta...
  • 4 篇 liu peng
  • 3 篇 bongo lars ailo
  • 3 篇 raicu ioan
  • 3 篇 tang bing
  • 3 篇 kanov kalin
  • 3 篇 bassiouni mostaf...
  • 3 篇 leidel john d.
  • 3 篇 lang michael
  • 3 篇 tao jie
  • 3 篇 wang xi
  • 3 篇 sun xian-he
  • 3 篇 gokhale maya

语言

  • 135 篇 英文
  • 3 篇 其他
检索条件"主题词=data-intensive computing"
138 条 记 录,以下是131-140 订阅
排序:
Stork data scheduler: mitigating the data bottleneck in e-Science
收藏 引用
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES 2011年 第1949期369卷 3254-3267页
作者: Kosar, Tevfik Balman, Mehmet Yildirim, Esma Kulasekaran, Sivakumar Ross, Brandon SUNY Buffalo Dept Comp Sci & Engn Buffalo NY 14260 USA Univ Calif Berkeley Lawrence Berkeley Lab Computat Res Div Berkeley CA 94720 USA Louisiana State Univ Ctr Computat & Technol Baton Rouge LA 70803 USA
In this paper, we present the Stork data scheduler as a solution for mitigating the data bottleneck in e-Science and data-intensive scientific discovery. Stork focuses on planning, scheduling, monitoring and managemen... 详细信息
来源: 评论
The Study of Hadoop Application across Multiple data Centers
The Study of Hadoop Application across Multiple Data Centers
收藏 引用
2015 International Industrial Informatics and Computer Engineering Conference(IIICEC 2015)
作者: Aizhi Wu College of Vehicles and Energy Yanshan University
Hadoop is a reasonable tool for cloud computing in big data and Map Reduce paradigm may be a highly successful programming model for large-scale data-intensive computing ***,traditional Hadoop and Map Reduce have been... 详细信息
来源: 评论
The reaming of life: based on the 2010 Jim Gray eScience Award Lecture
收藏 引用
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE 2013年 第4期25卷 445-453页
作者: Bourne, Philip E. Univ Calif San Diego Skaggs Sch Pharm & Pharmaceut Sci La Jolla CA 92093 USA
We are well into the era of data intensive-digital scientific discovery, an era defined by Jim Gray as the Fourth Paradigm. From my own perspective of the life sciences, much has been accomplished, but there is much t... 详细信息
来源: 评论
Canary: fault-tolerant FaaS for stateful time-sensitive applications  22
Canary: fault-tolerant FaaS for stateful time-sensitive appl...
收藏 引用
Proceedings of the International Conference on High Performance computing, Networking, Storage and Analysis
作者: Moiz Arif Kevin Assogba M. Mustafa Rafique Rochester Institute of Technology
Function-as-a-Service (FaaS) platforms have recently gained rapid popularity. Many stateful applications have been migrated to FaaS platforms due to their ease of deployment, scalability, and minimal management overhe... 详细信息
来源: 评论
Scalanytics: a declarative multi-core platform for scalable composable traffic analytics  13
Scalanytics: a declarative multi-core platform for scalable ...
收藏 引用
Proceedings of the 22nd international symposium on High-performance parallel and distributed computing
作者: Harjot Gill Dong Lin Xianglong Han Cam Nguyen Tanveer Gill Boon Thau Loo University of Pennsylvania Philadelphia PA USA
This paper presents SCALANYTICS, a declarative platform that supports high-performance application layer analysis of network traffic. SCALANYTICS uses (1) stateful network packet processing techniques for extracting a... 详细信息
来源: 评论
SaaS for science: the path to reality for research in the cloud  12
SaaS for science: the path to reality for research in the cl...
收藏 引用
Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the campus and beyond
作者: Ian Foster Vas Vasiliadis The University of Chicago Argonne IL
With the world moving to web-based tools for everything from photo sharing to research publication, it's no wonder scientists are now seeking online technologies to support their research. But the requirements of ... 详细信息
来源: 评论
Enabling Strategies for Big data Analytics in Hybrid Infrastructures
Enabling Strategies for Big Data Analytics in Hybrid Infrast...
收藏 引用
International Conference on High Performance computing and Simulation
作者: Julio C. S. Anjos Kassiano J. Matteussi Paulo R. R. De Souza Claudio F. R. Geyer Alexandre S. Veith Gilles Fedak Jorge Luis Victoria Barbosa Inst. of Inf. Fed. Univ. of Rio Grande do Sul Porto Alegre Brazil
A huge volume of data is produced every day by social networks (e.g. Facebook, Instagram, Whatsapp, etc.), sensors, mobile devices and other applications. Although the Cloud computing scenario has grown rapidly in rec... 详细信息
来源: 评论
Accelerating Distributed Workflows With Edge Resources
Accelerating Distributed Workflows With Edge Resources
收藏 引用
IEEE International Symposium on Parallel and Distributed Processing Workshops and PhD Forum
作者: Siddharth Ramakrishnan Robert Reutiman Abhishek Chandra Jon Weissman Dept. of Computer Science and Engineering University of Minnesota Twin Cities Minneapolis USA
Distributed data-intensive workflow applications are increasingly relying on and integrating remote resources including community data sources, services, and computational platforms. Increasingly, these are made avail... 详细信息
来源: 评论