咨询与建议

限定检索结果

文献类型

  • 78 篇 期刊文献
  • 60 篇 会议

馆藏范围

  • 138 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 130 篇 工学
    • 124 篇 计算机科学与技术...
    • 44 篇 电气工程
    • 28 篇 软件工程
    • 9 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 3 篇 网络空间安全
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 生物医学工程(可授...
  • 14 篇 理学
    • 4 篇 数学
    • 4 篇 生物学
    • 3 篇 化学
    • 1 篇 物理学
    • 1 篇 天文学
    • 1 篇 地球物理学
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 138 篇 data-intensive c...
  • 22 篇 cloud computing
  • 21 篇 mapreduce
  • 20 篇 big data
  • 10 篇 hadoop
  • 8 篇 high-performance...
  • 7 篇 high performance...
  • 5 篇 parallel process...
  • 5 篇 data management
  • 5 篇 parallel computi...
  • 5 篇 distributed comp...
  • 4 篇 remote sensing i...
  • 4 篇 computational mo...
  • 4 篇 scientific compu...
  • 4 篇 e-science
  • 3 篇 distributed syst...
  • 3 篇 deep learning
  • 3 篇 external sorting
  • 3 篇 task analysis
  • 3 篇 performance opti...

机构

  • 8 篇 chinese acad sci...
  • 6 篇 texas tech univ ...
  • 5 篇 univ sydney sch ...
  • 4 篇 chinese acad sci...
  • 4 篇 iit dept comp sc...
  • 4 篇 johns hopkins un...
  • 4 篇 univ cent florid...
  • 3 篇 hunan univ sci &...
  • 3 篇 china univ geosc...
  • 3 篇 johns hopkins un...
  • 2 篇 univ calif river...
  • 2 篇 coll william & m...
  • 2 篇 univ minnesota d...
  • 2 篇 ohio state univ ...
  • 2 篇 univ calif irvin...
  • 2 篇 los alamos natl ...
  • 2 篇 univ sydney sch ...
  • 2 篇 china univ geosc...
  • 2 篇 univ tromso ctr ...
  • 2 篇 wuhan univ techn...

作者

  • 11 篇 wang lizhe
  • 9 篇 chen yong
  • 9 篇 ranjan rajiv
  • 8 篇 ma yan
  • 5 篇 chen dan
  • 4 篇 burns randal
  • 4 篇 zomaya albert y.
  • 4 篇 rafique m. musta...
  • 4 篇 liu peng
  • 3 篇 bongo lars ailo
  • 3 篇 raicu ioan
  • 3 篇 tang bing
  • 3 篇 kanov kalin
  • 3 篇 bassiouni mostaf...
  • 3 篇 leidel john d.
  • 3 篇 lang michael
  • 3 篇 tao jie
  • 3 篇 wang xi
  • 3 篇 sun xian-he
  • 3 篇 gokhale maya

语言

  • 135 篇 英文
  • 3 篇 其他
检索条件"主题词=data-intensive computing"
138 条 记 录,以下是11-20 订阅
排序:
Performance Evaluation of data-intensive computing Applications on a Public IaaS Cloud
收藏 引用
COMPUTER JOURNAL 2016年 第3期59卷 287-307页
作者: Exposito, Roberto R. Taboada, Guillermo L. Ramos, Sabela Tourino, Juan Doallo, Ramon Univ A Coruna Dept Elect & Syst Comp Architecture Grp Campus Elvina S-N La Coruna 15071 Spain
The advent of cloud computing technologies, which dynamically provide on-demand access to computational resources over the Internet, is offering new possibilities to many scientists and researchers. Nowadays, Infrastr... 详细信息
来源: 评论
Multi-Tier Resource Allocation for data-intensive computing
收藏 引用
BIG data RESEARCH 2015年 第3期2卷 110-116页
作者: Ryan, Thomas Lee, Young Choon Univ Sydney Sch Informat Technol Sydney NSW 2006 Australia Macquarie Univ Dept Comp N Ryde NSW 2109 Australia
As distributed computing systems are used more widely, driven by trends such as 'big data' and cloud computing, they are being used for an increasingly wide range of applications. With this massive increase in... 详细信息
来源: 评论
Challenges and Opportunities for data-intensive computing in the Cloud
收藏 引用
COMPUTER 2014年 第12期47卷 82-85页
作者: Jung, Eun-Sung Kettimuthu, Rajkumar Argonne Natl Lab Math & Comp Sci Div Argonne IL 60439 USA
Now running mostly on high-performance computers, data-intensive applications pose several important challenges as they move toward cloud deployment.
来源: 评论
Alleviation of Disk I/O Contention in Virtualized Settings for data-intensive computing  2
Alleviation of Disk I/O Contention in Virtualized Settings f...
收藏 引用
International Symposium on Big data computing
作者: Malensek, Matthew Pallickara, Sangmi Lee Pallickara, Shrideep Colorado State Univ Dept Comp Sci Ft Collins CO 80523 USA
Steady growth in storage and processing capabilities has led to the accumulation of large-scale datasets that contain valuable insight into the interactions of complex systems, long- and short-term trends, and real-wo... 详细信息
来源: 评论
Improving Load Balance for data-intensive computing on Cloud Platforms
Improving Load Balance for Data-Intensive Computing on Cloud...
收藏 引用
IEEE International Conference on Smart Cloud (IEEE SmartCloud)
作者: Dai, Wei Ibrahim, Ibrahim Bassiouni, Mostafa Univ Cent Florida Dept Elect & Comp Engn Orlando FL 32816 USA Univ Cent Florida Dept Comp Sci Orlando FL 32816 USA
Nowadays, big data problems are ubiquitous, which in turn creates huge demand for data-intensive computing. The advent of Cloud computing has made data-intensive computing much more accessible and affordable than ever... 详细信息
来源: 评论
Scaling eCGA Model Building via data-intensive computing
Scaling eCGA Model Building via Data-Intensive Computing
收藏 引用
2010 IEEE World Congress on Computational Intelligence
作者: Verma, Abhishek Llora, Xavier Venkataraman, Shivaram Goldberg, David E. Campbell, Roy H. Univ Illinois Dept Comp Sci 201 N Goodwin Ave Urbana IL 61801 USA Univ Illinois Natl Ctr Supercomp Applicat Urbana IL 61801 USA Univ Illinois Dept Ind & Enterprise Syst Engn Urbana IL 61801 USA
This paper shows how the extended compact genetic algorithm can be scaled using data-intensive computing techniques such as MapReduce. Two different frameworks (Hadoop and MongoDB) are used to deploy MapReduce impleme... 详细信息
来源: 评论
Integrating data-intensive computing Systems with Biological data Analysis Frameworks  23
Integrating Data-Intensive Computing Systems with Biological...
收藏 引用
23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)
作者: Pedersen, Edvard Raknes, Inge Alexander Ernstsen, Martin Bongo, Lars Ailo Univ Tromso Dept Comp Sci N-9001 Tromso Norway Univ Tromso Ctr Bioinformat N-9001 Tromso Norway Univ Tromso Dept Chem Norstruct N-9001 Tromso Norway
Biological data analysis is typically implemented using a pipeline that combines many data analysis tools and meta-databases. These pipelines must scale to very large datasets, and therefore often require parallel and... 详细信息
来源: 评论
An Improved Bayesian Inference Method for data-intensive computing
An Improved Bayesian Inference Method for Data-Intensive Com...
收藏 引用
6th International Symposium on Intelligence Computation and Applications (ISICA 2012)
作者: Ma, Feng Liu, Weiyi Yunnan Univ Sch Informat Sci & Engn Kunming Peoples R China
Recent years, data-intensive computing has become a research hotspot. It also proposed a new challenge to traditional Bayesian inference methods. It is known that, traditional Bayesian inference methods could do a goo... 详细信息
来源: 评论
A Survey of Semantics-Aware Performance Optimization for data-intensive computing  15
A Survey of Semantics-Aware Performance Optimization for Dat...
收藏 引用
15th Intl Conf on Dependable, Autonomic and Secure computing, 15th Intl Conf on Pervasive Intelligence and computing, 3rd Intl Conf on Big data Intelligence and computing and Cyber Science and Technology Congress(DASC/PiCom/dataCom/CyberSciTech)
作者: Rao, Bingbing Wang, Liqang Univ Cent Florida Dept Comp Sci Orlando FL 32816 USA
We are living in the era of Big data and witnessing the explosion of data. Given that the limitation of CPU and I/O in a single computer, the mainstream approach to scalability is to distribute computations among a la... 详细信息
来源: 评论
Hyracks: A Flexible and Extensible Foundation for data-intensive computing
Hyracks: A Flexible and Extensible Foundation for Data-Inten...
收藏 引用
IEEE 27th International Conference on data Engineering (ICDE 2011)
作者: Borkar, Vinayak Carey, Michael Grover, Raman Onose, Nicola Vernica, Rares Univ Calif Irvine Dept Comp Sci Irvine CA 92697 USA
Hyracks is a new partitioned-parallel software platform designed to run data-intensive computations on large shared-nothing clusters of computers. Hyracks allows users to express a computation as a DAG of data operato... 详细信息
来源: 评论