咨询与建议

限定检索结果

文献类型

  • 5 篇 会议

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 5 篇 计算机科学与技术...
    • 1 篇 软件工程

主题

  • 5 篇 data-stream proc...
  • 2 篇 state-machine re...
  • 1 篇 complex event pr...
  • 1 篇 scalability
  • 1 篇 clustering
  • 1 篇 fault tolerance
  • 1 篇 temporal approxi...
  • 1 篇 consensus
  • 1 篇 recovery
  • 1 篇 map-reduce-based...
  • 1 篇 distributed proc...
  • 1 篇 checkpointing
  • 1 篇 partitioning opt...
  • 1 篇 dsms
  • 1 篇 dependency minin...
  • 1 篇 point-cloud anal...
  • 1 篇 context-aware da...

机构

  • 2 篇 friedrich alexan...
  • 1 篇 fujitsu labs ltd...
  • 1 篇 politecn milan d...
  • 1 篇 chalmers univ te...

作者

  • 2 篇 lawniczak laura
  • 2 篇 distler tobias
  • 1 篇 viel emeric
  • 1 篇 panigati emanuel...
  • 1 篇 gulisano vincenz...
  • 1 篇 ammon marco
  • 1 篇 ueda haruyasu
  • 1 篇 tsigas philippas
  • 1 篇 papatriantafilou...
  • 1 篇 najdataei hannan...

语言

  • 5 篇 英文
检索条件"主题词=data-stream processing"
5 条 记 录,以下是1-10 订阅
排序:
Generic Checkpointing Support for stream-based State-Machine Replication  10
Generic Checkpointing Support for Stream-based State-Machine...
收藏 引用
10th Workshop on Principles and Practice of Consistency for Distributed data (PaPoC)
作者: Lawniczak, Laura Ammon, Marco Distler, Tobias Friedrich Alexander Univ Erlangen Nurnberg FAU Erlangen Germany
stream-based replication facilitates the deployment and operation of state-machine replication protocols by running them as applications on top of data-stream processing frameworks. Taking advantage of platform-provid... 详细信息
来源: 评论
pi-Lisco: Parallel and Incremental stream-Based Point-Cloud Clustering  22
pi-Lisco: Parallel and Incremental Stream-Based Point-Cloud ...
收藏 引用
37th Annual ACM Symposium on Applied Computing
作者: Najdataei, Hannaneh Gulisano, Vincenzo Tsigas, Philippas Papatriantafilou, Marina Chalmers Univ Technol Gothenburg Sweden
Point-cloud clustering is a key task in applications like autonomous vehicles and digital twins, where rotating LiDAR sensors commonly generate point-cloud measurements in data streams. The state-ofthe-art algorithms,... 详细信息
来源: 评论
stream-based State-Machine Replication  17
Stream-based State-Machine Replication
收藏 引用
17th European Dependable Computing Conference (EDCC)
作者: Lawniczak, Laura Distler, Tobias Friedrich Alexander Univ Erlangen Nurnberg FAU Erlangen Germany
Developing state-machine replication protocols for practical use is a complex and labor-intensive process because of the myriad of essential tasks (e.g., deployment, communication, recovery) that need to be taken into... 详细信息
来源: 评论
Personalized Management of Semantic, Dynamic data in Pervasive Systems: Context-ADDICT Revisited
Personalized Management of Semantic, Dynamic Data in Pervasi...
收藏 引用
International Conference on High Performance Computing & Simulation (HPCS)
作者: Panigati, Emanuele Politecn Milan Dipartimento Elettron Informaz & Biongegneria I-20133 Milan Italy
Due to the high information load to which everyone is exposed in her everyday life, the rise of new, systems fully supporting pervasive information distribution, analysis and sharing becomes a key factor to allow a co... 详细信息
来源: 评论
data stream Partitioning Re-Optimization Based on Runtime Dependency Mining
Data Stream Partitioning Re-Optimization Based on Runtime De...
收藏 引用
IEEE 30th International Conference on data Engineering (ICDE)
作者: Viel, Emeric Ueda, Haruyasu Fujitsu Labs Ltd Syst Software Labs Kawasaki Kanagawa 211 Japan
In distributed data stream processing, a program made of multiple queries can be parallelized by partitioning input streams according to the values of specific attributes, or partitioning keys. Applying different part... 详细信息
来源: 评论