咨询与建议

限定检索结果

文献类型

  • 158 篇 期刊文献
  • 83 篇 会议

馆藏范围

  • 241 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 226 篇 工学
    • 149 篇 计算机科学与技术...
    • 81 篇 电气工程
    • 27 篇 控制科学与工程
    • 25 篇 软件工程
    • 23 篇 信息与通信工程
    • 15 篇 仪器科学与技术
    • 12 篇 机械工程
    • 8 篇 电子科学与技术(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 安全科学与工程
    • 3 篇 动力工程及工程热...
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
    • 2 篇 光学工程
  • 45 篇 理学
    • 19 篇 生物学
    • 10 篇 物理学
    • 9 篇 数学
    • 9 篇 化学
    • 3 篇 地球物理学
    • 3 篇 地质学
  • 26 篇 医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 临床医学
    • 4 篇 特种医学
  • 26 篇 管理学
    • 23 篇 管理科学与工程(可...
  • 6 篇 农学
  • 4 篇 经济学
    • 3 篇 应用经济学
    • 2 篇 理论经济学
  • 2 篇 法学
    • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 艺术学
  • 1 篇 文学

主题

  • 241 篇 deep autoencoder
  • 29 篇 deep learning
  • 24 篇 feature extracti...
  • 23 篇 anomaly detectio...
  • 9 篇 machine learning
  • 7 篇 transfer learnin...
  • 7 篇 deep neural netw...
  • 7 篇 fault detection
  • 7 篇 unsupervised lea...
  • 6 篇 fault diagnosis
  • 6 篇 dimensionality r...
  • 6 篇 neural networks
  • 6 篇 convolutional ne...
  • 5 篇 reinforcement le...
  • 5 篇 deep neural netw...
  • 4 篇 representation l...
  • 4 篇 random forest
  • 4 篇 graph regulariza...
  • 4 篇 multi-view clust...
  • 4 篇 prediction

机构

  • 4 篇 tampere univ uni...
  • 4 篇 univ chinese aca...
  • 3 篇 jozef stefan ins...
  • 2 篇 univ chinese aca...
  • 2 篇 giet univ sch en...
  • 2 篇 amirkabir univ t...
  • 2 篇 guizhou univ sch...
  • 2 篇 guangxi univ sch...
  • 2 篇 princess nourah ...
  • 2 篇 malayer univ fac...
  • 2 篇 xi an jiao tong ...
  • 2 篇 northwestern pol...
  • 2 篇 univ sydney busi...
  • 2 篇 tulane univ ctr ...
  • 2 篇 emory univ atlan...
  • 2 篇 sejong univ
  • 2 篇 inst appl math &...
  • 2 篇 univ oviedo elec...
  • 2 篇 hunan normal uni...
  • 2 篇 belarusian state...

作者

  • 4 篇 mishra krishna m...
  • 4 篇 huhtala kalevi j...
  • 3 篇 diaz ignacio
  • 3 篇 loncarevic zvezd...
  • 3 篇 gams andrej
  • 3 篇 krogerus tomi r.
  • 2 篇 wei hong-quan
  • 2 篇 bilodeau guillau...
  • 2 篇 roy pankaj raj
  • 2 篇 maghsoudi abbas
  • 2 篇 lam fan
  • 2 篇 gao junbin
  • 2 篇 hussain tanveer
  • 2 篇 xiang yang
  • 2 篇 pan yu
  • 2 篇 pan zhisong
  • 2 篇 petrovsky alexan...
  • 2 篇 naeini saeed sav...
  • 2 篇 nayak dillip ran...
  • 2 篇 liu liu

语言

  • 234 篇 英文
  • 2 篇 其他
  • 1 篇 法文
  • 1 篇 中文
检索条件"主题词=deep autoencoder"
241 条 记 录,以下是201-210 订阅
排序:
Generalization Based Database Acquisition for Robot Learning in Reduced Space
Generalization Based Database Acquisition for Robot Learning...
收藏 引用
29th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD)
作者: Loncarevic, Zvezdan Pahic, Rok Simonic, Mihael Ude, Ales Gams, Andrej Jozef Stefan Inst Jamova Cesta 39 Ljubljana 1000 Slovenia
In order to increase the autonomy of the modern, high complexity robots with multiple degrees of freedom, it is necessary for them to be able to learn and adapt their skills, for example, using reinforcement learning ... 详细信息
来源: 评论
SEPARATION OF METABOLITE AND MACROMOLECULE SIGNALS FOR 1H-MRSI USING LEARNED NONLINEAR MODELS  17
SEPARATION OF METABOLITE AND MACROMOLECULE SIGNALS FOR <SUP>...
收藏 引用
IEEE 17th International Symposium on Biomedical Imaging (ISBI)
作者: Li, Yahang Wang, Zepeng Lam, Fan Univ Illinois Dept Bioengn Champaign IL 61820 USA Univ Illinois Beckman Inst Adv Sci & Technol Champaign IL 61820 USA
This paper presents a novel method to reconstruct and separate metabolite and macromolecule (MM) signals in H-1 magnetic resonance spectroscopic imaging (MRSI) data using learned nonlinear models. Specifically, deep a... 详细信息
来源: 评论
Using deep Learning and Steam User Data for Better Video Game Recommendations  20
Using Deep Learning and Steam User Data for Better Video Gam...
收藏 引用
ACM Southeast Conference (ACMSE)
作者: Wang, Dylan Moh, Melody Moh, Teng-Sheng San Jose State Univ Dept Comp Sci San Jose CA 95192 USA
Recommendation systems have been used widely in many industries, including online retail, movies, and news media. Indeed, video game recommendation systems are one of the most important tools available to users and ga... 详细信息
来源: 评论
EMI signal feature enhancement based on extreme energy difference and deep auto-encoder
收藏 引用
IET SIGNAL PROCESSING 2018年 第7期12卷 852-856页
作者: Li, Hongyi Chen, Shengyu Xu, Shaofeng Song, Ziming Chen, Jiaxin Zhao, Di Beihang Univ Sch Math & Syst Sci LMIB Beijing 100191 Peoples R China Beihang Univ Sch Software Beijing 100191 Peoples R China Fudan Univ Sch Comp Sci & Technol Shanghai 201203 Peoples R China New York Univ Abu Dhabi Dept Elect & Comp Engn Abu Dhabi U Arab Emirates
To enhance features of different electromagnetic interference (EMI) signals, which are significant for further feature extraction and pattern recognition, the authors propose an EMI signal feature enhancement method b... 详细信息
来源: 评论
Outlier Resistant Unsupervised deep Architectures for Attributed Network Embedding  20
Outlier Resistant Unsupervised Deep Architectures for Attrib...
收藏 引用
13th Annual ACM International Conference on Web Search and Data Mining (WSDM)
作者: Bandyopadhyay, Sambaran Lokesh, N. Vivek, Saley Vishal Murty, M. N. IBM Res Bangalore Karnataka India Indian Inst Sci Bangalore Karnataka India
Attributed network embedding is the task to learn a lower dimensional vector representation of the nodes of an attributed network, which can be used further for downstream network mining tasks. Nodes in a network exhi... 详细信息
来源: 评论
Learning deep Embedding for Community Detection
Learning Deep Embedding for Community Detection
收藏 引用
International Conference on Big Data and Artificial Intelligence and Software Engineering (ICBASE)
作者: Pan, Yu Yang, Jiupeng Wang, Shuaihui Zou, Junhua Hu, Guyu Pan, Zhisong Army Engn Univ Nanjing Peoples R China Natl Univ Def Technol Changsha Peoples R China
Community detection is a classic and challenging network analysis task. Inspired by the similarity between autoencoder and modularity maximization model in terms of a low-dimensional approximation of the modularity ma... 详细信息
来源: 评论
deep Multi-view Subspace Clustering Network with Exclusive Constraint
Deep Multi-view Subspace Clustering Network with Exclusive C...
收藏 引用
第40届中国控制会议
作者: MA Rui ZHOU Zhiping School of Internet of Things Engineering Jiangnan University Engineering Research Center of Internet of Things Technology Applications Ministry of Education Jiangnan University
Multi-view subspace clustering aims to find the inherent structure of data as much as possible by fusing complementary information of multiple views to achieve better clustering ***,most of the traditional multiview s... 详细信息
来源: 评论
Semi-Supervised Manifold Alignment Using Parallel deep autoencoders
收藏 引用
ALGORITHMS 2019年 第9期12卷 186-186页
作者: Aziz, Fayeem Wong, Aaron S. W. Chalup, Stephan Univ Newcastle Sch Elect Engn & Comp Callaghan NSW 2308 Australia 4Tel Pty Ltd Warabrook NSW 2304 Australia
The aim of manifold learning is to extract low-dimensional manifolds from high-dimensional data. Manifold alignment is a variant of manifold learning that uses two or more datasets that are assumed to represent differ... 详细信息
来源: 评论
deep learning to evaluate seismic-induced soil liquefaction and modified transfer learning between various data sources
收藏 引用
Underground Space 2025年
作者: Hongwei Guo Chao Zhang Hongyuan Fang Timon Rabczuk Xiaoying Zhuang Department of Geotechnical Engineering College of Civil Engineering Tongji University Shanghai 200092 China Key Laboratory of Urban Security and Disaster Engineering Ministry of Education Beijing University of Technology Beijing 100124 China School of Water Conservancy and Transportation/Yellow River Laboratory/Underground Engineering Research Institute Zhengzhou University Zhengzhou 450001 China National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology Zhengzhou 450001 China Collaborative Innovation Center for Disaster Prevention and Control of Underground Engineering Jointly Built by Provinces and Ministries Zhengzhou 450001 China Institute of Structural Mechanics Bauhaus University Weimar Weimar 99425 Germany Chair of Computational Science and Simulation Technology Faculty of Mathematics and Physics Leibniz University Hannover Hannover 30167 Germany
Soil liquefaction assessment remains a crucial and complex challenge in seismic geotechnical engineering due to various liquefaction records and limited information, which entails a more generalized off-the-shelf mode... 详细信息
来源: 评论
Index tracking based on deep neural network
收藏 引用
COGNITIVE SYSTEMS RESEARCH 2019年 57卷 107-114页
作者: Ouyang, Hongbing Zhang, Xiaowei Yan, Hongju Huazhong Univ Sci & Technol Sch Econ Wuhan Hubei Peoples R China
deep learning has a strong ability to extract feature representations from data, since it has a great advantage in processing nonlinear and non-stationary data and reflecting nonlinear interactive relationship. This p... 详细信息
来源: 评论